PyTorch 是一个深度学习框架,具有动态计算图和自动微分的功能,广泛应用于各种深度学习任务中。下面是一些 PyTorch 的详细代码介绍,涵盖了从定义模型、数据加载、训练到评估的整个流程:
1. 定义模型
首先,我们定义一个简单的神经网络模型。
python
import torch
import torch.nn as nn
class SimpleNN(nn.Module):
def __init__(self, input_size, hidden_size, num_classes):
super(SimpleNN, self).__init__()
self.fc1 = nn.Linear(input_size, hidden_size)
self.relu = nn.ReLU()
self.fc2 = nn.Linear(hidden_size, num_classes)
def forward(self, x):
out = self.fc1(x)
out = self.relu(out)
out = self.fc2(out)
return out
2. 准备数据
接下来,我们准备训练和测试数据。
python
import torch
import torchvision
import torchvision.transforms as transforms
# 定义数据转换
transform = transforms.Compose(
[transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])
# 加载训练数据集
trainset = torchvision.datasets.CIFAR10(root='./data', train=True,
download=True, transform=transform)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=4,
shuffle=True, num_workers=2)
# 加载测试数据集
testset = torchvision.datasets.CIFAR10(root='./data', train=False,
download=True, transform=transform)
testloader = torch.utils.data.DataLoader(testset, batch_size=4,
shuffle=False, num_workers=2)
classes = ('plane', 'car', 'bird', 'cat',
'deer', 'dog', 'frog', 'horse', 'ship', 'truck')
3. 定义损失函数和优化器
我们选择交叉熵损失函数和随机梯度下降优化器。
python
import torch.optim as optim
# 定义损失函数
criterion = nn.CrossEntropyLoss()
# 定义优化器
optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9)
4. 训练模型
接下来,我们进行模型的训练。
python
# 循环遍历数据集多次
for epoch in range(2):
running_loss = 0.0
for i, data in enumerate(trainloader, 0):
# 获取输入数据
inputs, labels = data
# 梯度清零
optimizer.zero_grad()
# 正向传播 + 反向传播 + 优化
outputs = net(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
# 打印统计信息
running_loss += loss.item()
if i % 2000 == 1999: # 每2000个小批量数据打印一次
print('[%d, %5d] loss: %.3f' %
(epoch + 1, i + 1, running_loss / 2000))
running_loss = 0.0
print('Finished Training')
5. 测试模型
最后,我们使用测试数据集评估模型的性能。
python
correct = 0
total = 0
with torch.no_grad():
for data in testloader:
images, labels = data
outputs = net(images)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
print('Accuracy of the network on the 10000 test images: %d %%' % (
100 * correct / total))
以上就是一个完整的 PyTorch 示例,涵盖了模型定义、数据准备、损失函数和优化器的选择、模型训练以及模型评估的过程。通过这些代码,你可以开始构建和训练自己的深度学习模型了。