一种基于OpenCV的图片倾斜矫正方法

需求描述:

对倾斜的图片进行矫正,返回倾斜角度和矫正后的图片。

解决方法:

1、各种角度点被投影到一个累加器阵列中,其中倾斜角度可以定义为在最大化对齐的搜索间隔内的投影角度。

2、以不同的角度旋转图像,并为每次迭代生成像素的直方图。

3、为了确定倾斜角度,比较峰值之间的最大差异,并使用这个倾斜角度,旋转图像来纠正倾斜。

python 复制代码
#coding=utf-8
import cv2
import numpy as np

def rotate_image(image, angle):
    (h, w) = image.shape[: 2]
    center = (w // 2, h // 2)
    M = cv2.getRotationMatrix2D(center, angle, 1.0)
    corrected = cv2.warpAffine(image, M, (w, h), flags = cv2.INTER_CUBIC, \
        borderMode = cv2.BORDER_REPLICATE)
    return corrected

def determine_score(arr):
     histogram = np.sum(arr, axis = 2, dtype = float)
     score = np.sum((histogram[..., 1 :] - histogram[..., : -1]) ** 2, \
        axis = 1, dtype = float)
     return score

def correct_skew(image, delta = 0.1, limit = 5):
     thresh = cv2.threshold(image, 0, 255, cv2.THRESH_BINARY_INV + \
        cv2.THRESH_OTSU)[1]
     angles = np.arange(-limit, limit + delta, delta)
     img_stack = np.stack([rotate_image(thresh, angle) for angle \
        in angles], axis = 0)
     scores = determine_score(img_stack)
     best_angle = angles[np.argmax(scores)]
     corrected = rotate_image(image, best_angle)
     return best_angle, corrected
if __name__ == "__main__":
    file_path=r'D:/_21.png'
    img = cv2.imread(file_path, 0)
    angle, corrected = correct_skew(img)
    print(angle)
    cv2.imwrite(r'D:/temp_' + file_path.split('/')[-1], corrected)

执行结果:

矫正前:

矫正后:

相关推荐
开发者每周简报11 分钟前
求职市场变化
人工智能·面试·职场和发展
AI前沿技术追踪24 分钟前
OpenAI 12天发布会:AI革命的里程碑@附35页PDF文件下载
人工智能
jndingxin29 分钟前
OpenCV相机标定与3D重建(26)计算两个二维点集之间的部分仿射变换矩阵(2x3)函数 estimateAffinePartial2D()的使用
opencv·3d
余~~1853816280030 分钟前
稳定的碰一碰发视频、碰一碰矩阵源码技术开发,支持OEM
开发语言·人工智能·python·音视频
galileo20161 小时前
LLM与金融
人工智能
DREAM依旧1 小时前
隐马尔科夫模型|前向算法|Viterbi 算法
人工智能
GocNeverGiveUp2 小时前
机器学习2-NumPy
人工智能·机器学习·numpy
B站计算机毕业设计超人2 小时前
计算机毕业设计PySpark+Hadoop中国城市交通分析与预测 Python交通预测 Python交通可视化 客流量预测 交通大数据 机器学习 深度学习
大数据·人工智能·爬虫·python·机器学习·课程设计·数据可视化
学术头条2 小时前
清华、智谱团队:探索 RLHF 的 scaling laws
人工智能·深度学习·算法·机器学习·语言模型·计算语言学
18号房客3 小时前
一个简单的机器学习实战例程,使用Scikit-Learn库来完成一个常见的分类任务——**鸢尾花数据集(Iris Dataset)**的分类
人工智能·深度学习·神经网络·机器学习·语言模型·自然语言处理·sklearn