一种基于OpenCV的图片倾斜矫正方法

需求描述:

对倾斜的图片进行矫正,返回倾斜角度和矫正后的图片。

解决方法:

1、各种角度点被投影到一个累加器阵列中,其中倾斜角度可以定义为在最大化对齐的搜索间隔内的投影角度。

2、以不同的角度旋转图像,并为每次迭代生成像素的直方图。

3、为了确定倾斜角度,比较峰值之间的最大差异,并使用这个倾斜角度,旋转图像来纠正倾斜。

python 复制代码
#coding=utf-8
import cv2
import numpy as np

def rotate_image(image, angle):
    (h, w) = image.shape[: 2]
    center = (w // 2, h // 2)
    M = cv2.getRotationMatrix2D(center, angle, 1.0)
    corrected = cv2.warpAffine(image, M, (w, h), flags = cv2.INTER_CUBIC, \
        borderMode = cv2.BORDER_REPLICATE)
    return corrected

def determine_score(arr):
     histogram = np.sum(arr, axis = 2, dtype = float)
     score = np.sum((histogram[..., 1 :] - histogram[..., : -1]) ** 2, \
        axis = 1, dtype = float)
     return score

def correct_skew(image, delta = 0.1, limit = 5):
     thresh = cv2.threshold(image, 0, 255, cv2.THRESH_BINARY_INV + \
        cv2.THRESH_OTSU)[1]
     angles = np.arange(-limit, limit + delta, delta)
     img_stack = np.stack([rotate_image(thresh, angle) for angle \
        in angles], axis = 0)
     scores = determine_score(img_stack)
     best_angle = angles[np.argmax(scores)]
     corrected = rotate_image(image, best_angle)
     return best_angle, corrected
if __name__ == "__main__":
    file_path=r'D:/_21.png'
    img = cv2.imread(file_path, 0)
    angle, corrected = correct_skew(img)
    print(angle)
    cv2.imwrite(r'D:/temp_' + file_path.split('/')[-1], corrected)

执行结果:

矫正前:

矫正后:

相关推荐
eBest数字化转型方案28 分钟前
2025年快消品行业渠道数字化营销系统全景透视与选型策略
人工智能
kkcodeer44 分钟前
大模型Prompt原理、编写原则与技巧以及衡量方法
人工智能·prompt·ai大模型
DevSecOps选型指南1 小时前
SBOM风险预警 | NPM前端框架 javaxscript 遭受投毒窃取浏览器cookie
前端·人工智能·前端框架·npm·软件供应链安全厂商·软件供应链安全工具
rocksun1 小时前
MCP利用流式HTTP实现实时AI工具交互
人工智能·mcp
xiaok1 小时前
docker network create langbot-network这条命令在dify输入还是在langbot中输入
人工智能
It_张1 小时前
LLM(大语言模型)的工作原理 图文讲解
人工智能·语言模型·自然语言处理
Darach1 小时前
坐姿检测Python实现
人工智能·python
xiaok1 小时前
LangBot 和消息平台均运行在 Docker 容器中
人工智能
queeny2 小时前
Datawhale AI夏令营 科大讯飞AI大赛(大模型技术) Task3 心得
人工智能