一种基于OpenCV的图片倾斜矫正方法

需求描述:

对倾斜的图片进行矫正,返回倾斜角度和矫正后的图片。

解决方法:

1、各种角度点被投影到一个累加器阵列中,其中倾斜角度可以定义为在最大化对齐的搜索间隔内的投影角度。

2、以不同的角度旋转图像,并为每次迭代生成像素的直方图。

3、为了确定倾斜角度,比较峰值之间的最大差异,并使用这个倾斜角度,旋转图像来纠正倾斜。

python 复制代码
#coding=utf-8
import cv2
import numpy as np

def rotate_image(image, angle):
    (h, w) = image.shape[: 2]
    center = (w // 2, h // 2)
    M = cv2.getRotationMatrix2D(center, angle, 1.0)
    corrected = cv2.warpAffine(image, M, (w, h), flags = cv2.INTER_CUBIC, \
        borderMode = cv2.BORDER_REPLICATE)
    return corrected

def determine_score(arr):
     histogram = np.sum(arr, axis = 2, dtype = float)
     score = np.sum((histogram[..., 1 :] - histogram[..., : -1]) ** 2, \
        axis = 1, dtype = float)
     return score

def correct_skew(image, delta = 0.1, limit = 5):
     thresh = cv2.threshold(image, 0, 255, cv2.THRESH_BINARY_INV + \
        cv2.THRESH_OTSU)[1]
     angles = np.arange(-limit, limit + delta, delta)
     img_stack = np.stack([rotate_image(thresh, angle) for angle \
        in angles], axis = 0)
     scores = determine_score(img_stack)
     best_angle = angles[np.argmax(scores)]
     corrected = rotate_image(image, best_angle)
     return best_angle, corrected
if __name__ == "__main__":
    file_path=r'D:/_21.png'
    img = cv2.imread(file_path, 0)
    angle, corrected = correct_skew(img)
    print(angle)
    cv2.imwrite(r'D:/temp_' + file_path.split('/')[-1], corrected)

执行结果:

矫正前:

矫正后:

相关推荐
melonbo5 分钟前
自动驾驶场景下的图像预处理
人工智能·机器学习·自动驾驶
智慧化智能化数字化方案12 分钟前
【精品资料鉴赏】财务数智化智能化建设学习
人工智能·学习·财务数字化·财务数智化·财务一体化·财务共享平台·财务成熟度评估模型
柠檬071112 分钟前
opencv 未知函数记录-edgePreservingFilter
人工智能·opencv·计算机视觉
小霖家的混江龙13 分钟前
不再费脑, 手算 Attention 公式, 理解 Transformer 注意力的数学本质
人工智能·llm·aigc
小北方城市网14 分钟前
GEO 元宇宙协同与自主进化治理实战:构建全域自治的智能地理生态
大数据·人工智能·microsoft·知识图谱·数据库架构·geo
一条咸鱼_SaltyFish14 分钟前
[Day7] contract-ai深度剖析:大模型适配项目的架构设计与策略实现
java·开发语言·人工智能·经验分享·程序人生·开源软件·个人开发
说私域16 分钟前
从“打杂”到“战略中枢”:开源AI大模型、AI智能名片与S2B2C商城小程序重构运营价值体系
人工智能·小程序·重构
Aaron158816 分钟前
基于RFSOC+VU13P在5G波束成形中的技术应用分析报告
人工智能·算法·5g·fpga开发·硬件架构·信息与通信·基带工程
kisshuan1239616 分钟前
基于RetinaNet的配网设备状态识别与分类_R101_FPN_MS-640-800-3x_COCO模型
人工智能·分类·数据挖掘
ASD123asfadxv19 分钟前
水果图像识别与分类:基于CondInst模型的高精度实例分割实践
人工智能·分类·数据挖掘