<基础数学> 平面向量基本定理

平面向量基本定理

  1. 向量平行
    a ⃗ / / b ⃗ ( b ⃗ ≠ 0 ⃗ )的充要条件是 \vec{a} // \vec{b}( \vec{b}\neq \vec{0})的充要条件是 a //b (b =0 )的充要条件是 x 1 y 2 − y 1 x 2 = 0 x_1y_2-y_1x_2=0 x1y2−y1x2=0
  2. 向量垂直
    a ⃗ ⊥ b ⃗ ⇔ a ⃗ ⋅ b ⃗ = 0 , \vec{a} \bot \vec{b} \Leftrightarrow \vec{a} \cdot \vec{b}=0, a ⊥b ⇔a ⋅b =0, 即 x 1 x 2 + y 1 y 2 = 0 即x_1x_2+y_1y_2=0 即x1x2+y1y2=0
  3. 向量角度
    c o s θ = a ⃗ ⋅ b ⃗ ∣ a ⃗ ∣ ∣ b ⃗ ∣ = x 1 x 2 + y 1 y 2 ( x 1 ) 2 + ( y 1 ) 2 + ( x 2 ) 2 + ( y 2 ) 2 cos \theta=\frac{\vec{a} \cdot \vec{b}}{|\vec{a}||\vec{b}|}=\frac{x_1x_2+y_1y_2}{\sqrt{(x_1)^2+(y_1)^2}+\sqrt{(x_2)^2+(y_2)^2}} cosθ=∣a ∣∣b ∣a ⋅b =(x1)2+(y1)2 +(x2)2+(y2)2 x1x2+y1y2
  4. 向量同向和反向
    当 a ⃗ 与 b ⃗ 同向时, a ⃗ ⋅ b ⃗ = ∣ a ⃗ ∣ ∣ b ⃗ ∣ ; 当\vec{a}与\vec{b}同向时,\vec{a} \cdot \vec{b}=|\vec{a}||\vec{b}|; 当a 与b 同向时,a ⋅b =∣a ∣∣b ∣;
    当 a ⃗ 与 b ⃗ 反向时, a ⃗ ⋅ b ⃗ = − ∣ a ⃗ ∣ ∣ b ⃗ ∣ ; 当\vec{a}与\vec{b}反向时,\vec{a} \cdot \vec{b}=-|\vec{a}||\vec{b}|; 当a 与b 反向时,a ⋅b =−∣a ∣∣b ∣;
相关推荐
The_Killer.1 天前
格密码--从FFT到NTT(附源码)
学习·线性代数·密码学·格密码
小李独爱秋1 天前
特征值优化:机器学习中的数学基石
人工智能·python·线性代数·机器学习·数学建模
把玩计算机2 天前
相机几何 空间点到像素平面转换
数码相机·平面
18538162800余+3 天前
数字人分身 + 矩阵系统聚合的源码搭建与定制开发
线性代数·矩阵
semantist@语校3 天前
第十九篇|东京世界日本语学校的结构数据建模:制度函数、能力矩阵与升学图谱
数据库·人工智能·线性代数·矩阵·prompt·github·数据集
点云SLAM3 天前
四元数 (Quaternion)在位姿(SE(3))表示下的各类导数(雅可比)知识(2)
人工智能·线性代数·算法·机器学习·slam·四元数·李群李代数
老歌老听老掉牙4 天前
OpenCascade几何建模:平面创建与法向拉伸的工程实现
c++·平面·opencascade
云手机掌柜4 天前
下一代社媒运营工具:亚矩阵云手机集成AIGC与数字人技术引领内容革命
大数据·线性代数·智能手机·矩阵·aigc
haing20194 天前
已知两个平面点的坐标、切线方向、曲率,构造三阶Bezier曲线的方法
平面·曲率·bezier曲线·g2连续