<基础数学> 平面向量基本定理

平面向量基本定理

  1. 向量平行
    a ⃗ / / b ⃗ ( b ⃗ ≠ 0 ⃗ )的充要条件是 \vec{a} // \vec{b}( \vec{b}\neq \vec{0})的充要条件是 a //b (b =0 )的充要条件是 x 1 y 2 − y 1 x 2 = 0 x_1y_2-y_1x_2=0 x1y2−y1x2=0
  2. 向量垂直
    a ⃗ ⊥ b ⃗ ⇔ a ⃗ ⋅ b ⃗ = 0 , \vec{a} \bot \vec{b} \Leftrightarrow \vec{a} \cdot \vec{b}=0, a ⊥b ⇔a ⋅b =0, 即 x 1 x 2 + y 1 y 2 = 0 即x_1x_2+y_1y_2=0 即x1x2+y1y2=0
  3. 向量角度
    c o s θ = a ⃗ ⋅ b ⃗ ∣ a ⃗ ∣ ∣ b ⃗ ∣ = x 1 x 2 + y 1 y 2 ( x 1 ) 2 + ( y 1 ) 2 + ( x 2 ) 2 + ( y 2 ) 2 cos \theta=\frac{\vec{a} \cdot \vec{b}}{|\vec{a}||\vec{b}|}=\frac{x_1x_2+y_1y_2}{\sqrt{(x_1)^2+(y_1)^2}+\sqrt{(x_2)^2+(y_2)^2}} cosθ=∣a ∣∣b ∣a ⋅b =(x1)2+(y1)2 +(x2)2+(y2)2 x1x2+y1y2
  4. 向量同向和反向
    当 a ⃗ 与 b ⃗ 同向时, a ⃗ ⋅ b ⃗ = ∣ a ⃗ ∣ ∣ b ⃗ ∣ ; 当\vec{a}与\vec{b}同向时,\vec{a} \cdot \vec{b}=|\vec{a}||\vec{b}|; 当a 与b 同向时,a ⋅b =∣a ∣∣b ∣;
    当 a ⃗ 与 b ⃗ 反向时, a ⃗ ⋅ b ⃗ = − ∣ a ⃗ ∣ ∣ b ⃗ ∣ ; 当\vec{a}与\vec{b}反向时,\vec{a} \cdot \vec{b}=-|\vec{a}||\vec{b}|; 当a 与b 反向时,a ⋅b =−∣a ∣∣b ∣;
相关推荐
懒麻蛇6 小时前
从矩阵相关到矩阵回归:曼特尔检验与 MRQAP
人工智能·线性代数·矩阵·数据挖掘·回归
stormsha10 小时前
裸眼3D原理浅析AI如何生成平面裸眼3D图像以科幻战士破框而出为例
人工智能·计算机视觉·平面·3d·ai
ChoSeitaku19 小时前
线代强化NO20|矩阵的相似与相似对角化|综合运用
线性代数·机器学习·矩阵
西西弗Sisyphus19 小时前
矩阵的左乘和右乘有什么区别
线性代数·矩阵
西西弗Sisyphus20 小时前
满秩分解是怎么把矩阵分解成了两个满秩的矩阵
线性代数·矩阵·初等矩阵·满秩分解
AI科技星20 小时前
为什么宇宙无限大?
开发语言·数据结构·经验分享·线性代数·算法
西西弗Sisyphus1 天前
线性代数 - 解空间
线性代数·解空间
ChoSeitaku2 天前
线代强化NO19|矩阵的相似与相似对角化
python·线性代数·矩阵
ChoSeitaku2 天前
线代强化NO18|矩阵的相似与相似对角化|概念|性质|判定|矩阵相似
线性代数·矩阵
Hcoco_me2 天前
大模型面试题3:如何计算exp(A) ,其中A为一个矩阵。
线性代数·矩阵