<基础数学> 平面向量基本定理

平面向量基本定理

  1. 向量平行
    a ⃗ / / b ⃗ ( b ⃗ ≠ 0 ⃗ )的充要条件是 \vec{a} // \vec{b}( \vec{b}\neq \vec{0})的充要条件是 a //b (b =0 )的充要条件是 x 1 y 2 − y 1 x 2 = 0 x_1y_2-y_1x_2=0 x1y2−y1x2=0
  2. 向量垂直
    a ⃗ ⊥ b ⃗ ⇔ a ⃗ ⋅ b ⃗ = 0 , \vec{a} \bot \vec{b} \Leftrightarrow \vec{a} \cdot \vec{b}=0, a ⊥b ⇔a ⋅b =0, 即 x 1 x 2 + y 1 y 2 = 0 即x_1x_2+y_1y_2=0 即x1x2+y1y2=0
  3. 向量角度
    c o s θ = a ⃗ ⋅ b ⃗ ∣ a ⃗ ∣ ∣ b ⃗ ∣ = x 1 x 2 + y 1 y 2 ( x 1 ) 2 + ( y 1 ) 2 + ( x 2 ) 2 + ( y 2 ) 2 cos \theta=\frac{\vec{a} \cdot \vec{b}}{|\vec{a}||\vec{b}|}=\frac{x_1x_2+y_1y_2}{\sqrt{(x_1)^2+(y_1)^2}+\sqrt{(x_2)^2+(y_2)^2}} cosθ=∣a ∣∣b ∣a ⋅b =(x1)2+(y1)2 +(x2)2+(y2)2 x1x2+y1y2
  4. 向量同向和反向
    当 a ⃗ 与 b ⃗ 同向时, a ⃗ ⋅ b ⃗ = ∣ a ⃗ ∣ ∣ b ⃗ ∣ ; 当\vec{a}与\vec{b}同向时,\vec{a} \cdot \vec{b}=|\vec{a}||\vec{b}|; 当a 与b 同向时,a ⋅b =∣a ∣∣b ∣;
    当 a ⃗ 与 b ⃗ 反向时, a ⃗ ⋅ b ⃗ = − ∣ a ⃗ ∣ ∣ b ⃗ ∣ ; 当\vec{a}与\vec{b}反向时,\vec{a} \cdot \vec{b}=-|\vec{a}||\vec{b}|; 当a 与b 反向时,a ⋅b =−∣a ∣∣b ∣;
相关推荐
香芋Yu7 小时前
【机器学习教程】第02章:线性代数基础【上】
笔记·线性代数·机器学习
矢志航天的阿洪1 天前
IGRF-13 数学细节与公式说明
线性代数·机器学习·矩阵
人机与认知实验室1 天前
人机环境系统矩阵的“秩”
线性代数·矩阵
闪电麦坤951 天前
Leecode热题100:矩阵置零(矩阵)
线性代数·算法·矩阵
人机与认知实验室1 天前
人机环境系统矩阵典型案例分析
线性代数·矩阵
山楂树の1 天前
计算机图形学 模型矩阵的逆矩阵:如何从“世界”回归“局部”?
线性代数·矩阵·回归
闪电麦坤951 天前
Leecode热题100:螺旋矩阵(矩阵)
线性代数·矩阵
AI科技星1 天前
匀速圆周运动正电荷相关场方程的求导证明与验证
人工智能·线性代数·算法·矩阵·数据挖掘
刘叨叨趣味运维1 天前
解剖K8s控制平面(上):API Server与etcd如何成为集群的“大脑“与“记忆“?
平面·kubernetes·etcd
victory04312 天前
交叉熵处softmax有计算被浪费,因为我们只需要target位置的softmax而不是整个矩阵的softmax
线性代数·矩阵