<基础数学> 平面向量基本定理

平面向量基本定理

  1. 向量平行
    a ⃗ / / b ⃗ ( b ⃗ ≠ 0 ⃗ )的充要条件是 \vec{a} // \vec{b}( \vec{b}\neq \vec{0})的充要条件是 a //b (b =0 )的充要条件是 x 1 y 2 − y 1 x 2 = 0 x_1y_2-y_1x_2=0 x1y2−y1x2=0
  2. 向量垂直
    a ⃗ ⊥ b ⃗ ⇔ a ⃗ ⋅ b ⃗ = 0 , \vec{a} \bot \vec{b} \Leftrightarrow \vec{a} \cdot \vec{b}=0, a ⊥b ⇔a ⋅b =0, 即 x 1 x 2 + y 1 y 2 = 0 即x_1x_2+y_1y_2=0 即x1x2+y1y2=0
  3. 向量角度
    c o s θ = a ⃗ ⋅ b ⃗ ∣ a ⃗ ∣ ∣ b ⃗ ∣ = x 1 x 2 + y 1 y 2 ( x 1 ) 2 + ( y 1 ) 2 + ( x 2 ) 2 + ( y 2 ) 2 cos \theta=\frac{\vec{a} \cdot \vec{b}}{|\vec{a}||\vec{b}|}=\frac{x_1x_2+y_1y_2}{\sqrt{(x_1)^2+(y_1)^2}+\sqrt{(x_2)^2+(y_2)^2}} cosθ=∣a ∣∣b ∣a ⋅b =(x1)2+(y1)2 +(x2)2+(y2)2 x1x2+y1y2
  4. 向量同向和反向
    当 a ⃗ 与 b ⃗ 同向时, a ⃗ ⋅ b ⃗ = ∣ a ⃗ ∣ ∣ b ⃗ ∣ ; 当\vec{a}与\vec{b}同向时,\vec{a} \cdot \vec{b}=|\vec{a}||\vec{b}|; 当a 与b 同向时,a ⋅b =∣a ∣∣b ∣;
    当 a ⃗ 与 b ⃗ 反向时, a ⃗ ⋅ b ⃗ = − ∣ a ⃗ ∣ ∣ b ⃗ ∣ ; 当\vec{a}与\vec{b}反向时,\vec{a} \cdot \vec{b}=-|\vec{a}||\vec{b}|; 当a 与b 反向时,a ⋅b =−∣a ∣∣b ∣;
相关推荐
醒过来摸鱼11 小时前
空间直线方程
线性代数·概率论
测试人社区-小明17 小时前
涂鸦板测试指南:从基础功能到用户体验的完整框架
人工智能·opencv·线性代数·微服务·矩阵·架构·ux
hweiyu0017 小时前
数据结构:矩阵
数据结构·线性代数·矩阵
拉姆哥的小屋18 小时前
从400维向量到160000维矩阵:基于深度学习的火焰参数预测系统全解析
开发语言·人工智能·python·深度学习·线性代数·算法·矩阵
咚咚王者20 小时前
人工智能之数学基础 线性代数:第四章 矩阵分解
人工智能·线性代数·矩阵
咚咚王者1 天前
人工智能之数学基础 线性代数:第三章 特征值与特征向量
人工智能·线性代数·机器学习
MapGIS技术支持1 天前
MapGIS Objects Java计算一个三维点到平面的距离
java·开发语言·平面·制图·mapgis
Tipriest_1 天前
旋转矩阵与欧拉角转换数学公式与代码详解
线性代数·矩阵
十子木1 天前
布林克曼方程和Darcy方程的区别
线性代数·矩阵·学习方法
测试人社区-小明1 天前
智能测试误报问题的深度解析与应对策略
人工智能·opencv·线性代数·微服务·矩阵·架构·数据挖掘