<基础数学> 平面向量基本定理

平面向量基本定理

  1. 向量平行
    a ⃗ / / b ⃗ ( b ⃗ ≠ 0 ⃗ )的充要条件是 \vec{a} // \vec{b}( \vec{b}\neq \vec{0})的充要条件是 a //b (b =0 )的充要条件是 x 1 y 2 − y 1 x 2 = 0 x_1y_2-y_1x_2=0 x1y2−y1x2=0
  2. 向量垂直
    a ⃗ ⊥ b ⃗ ⇔ a ⃗ ⋅ b ⃗ = 0 , \vec{a} \bot \vec{b} \Leftrightarrow \vec{a} \cdot \vec{b}=0, a ⊥b ⇔a ⋅b =0, 即 x 1 x 2 + y 1 y 2 = 0 即x_1x_2+y_1y_2=0 即x1x2+y1y2=0
  3. 向量角度
    c o s θ = a ⃗ ⋅ b ⃗ ∣ a ⃗ ∣ ∣ b ⃗ ∣ = x 1 x 2 + y 1 y 2 ( x 1 ) 2 + ( y 1 ) 2 + ( x 2 ) 2 + ( y 2 ) 2 cos \theta=\frac{\vec{a} \cdot \vec{b}}{|\vec{a}||\vec{b}|}=\frac{x_1x_2+y_1y_2}{\sqrt{(x_1)^2+(y_1)^2}+\sqrt{(x_2)^2+(y_2)^2}} cosθ=∣a ∣∣b ∣a ⋅b =(x1)2+(y1)2 +(x2)2+(y2)2 x1x2+y1y2
  4. 向量同向和反向
    当 a ⃗ 与 b ⃗ 同向时, a ⃗ ⋅ b ⃗ = ∣ a ⃗ ∣ ∣ b ⃗ ∣ ; 当\vec{a}与\vec{b}同向时,\vec{a} \cdot \vec{b}=|\vec{a}||\vec{b}|; 当a 与b 同向时,a ⋅b =∣a ∣∣b ∣;
    当 a ⃗ 与 b ⃗ 反向时, a ⃗ ⋅ b ⃗ = − ∣ a ⃗ ∣ ∣ b ⃗ ∣ ; 当\vec{a}与\vec{b}反向时,\vec{a} \cdot \vec{b}=-|\vec{a}||\vec{b}|; 当a 与b 反向时,a ⋅b =−∣a ∣∣b ∣;
相关推荐
种时光的人9 小时前
CANN仓库核心解读:catlass夯实AIGC大模型矩阵计算的算力基石
线性代数·矩阵·aigc
Zfox_12 小时前
CANN Catlass 算子模板库深度解析:高性能矩阵乘(GEMM)原理、融合优化与模板化开发实践
线性代数·矩阵
lbb 小魔仙18 小时前
面向 NPU 的高性能矩阵乘法:CANN ops-nn 算子库架构与优化技术
线性代数·矩阵·架构
劈星斩月20 小时前
线性代数-3Blue1Brown《线性代数的本质》特征向量与特征值(12)
线性代数·特征值·特征向量·特征方程
池央1 天前
ops-nn 算子库中的数据布局与混合精度策略:卷积、矩阵乘法与 RNN 的优化实践
rnn·线性代数·矩阵
深鱼~1 天前
大模型底层算力支撑:ops-math在矩阵乘法上的优化
人工智能·线性代数·矩阵·cann
Zfox_1 天前
CANN PyPTO 编程范式深度解析:并行张量与 Tile 分块操作的架构原理、内存控制与流水线调度机制
线性代数·矩阵·架构
TechWJ1 天前
catlass深度解析:Ascend平台的高性能矩阵运算模板库
线性代数·矩阵·ascend·cann·catlass
deep_drink2 天前
【基础知识一】线性代数的核心:从矩阵变换到 SVD 终极奥义
线性代数·机器学习·矩阵
数智工坊2 天前
【数据结构-特殊矩阵】3.5 特殊矩阵-压缩存储
数据结构·线性代数·矩阵