【AI】数学基础之矩阵

线性代数中的矩阵概念和计算公式非常核心且广泛应用,以下从基础概念、计算公式到具体例子,系统梳理:


一、矩阵的基本概念

矩阵(Matrix) 是一个按照长方形排列的数表,通常用大写字母表示,如 ( A )。一个 ( m \times n ) 的矩阵有 ( m ) 行 ( n ) 列:

A = \\begin{bmatrix} a_{11} \& a_{12} \& \\dots \& a_{1n} \\ a_{21} \& a_{22} \& \\dots \& a_{2n} \\ \\vdots \& \\vdots \& \\ddots \& \\vdots \\ a_{m1} \& a_{m2} \& \\dots \& a_{mn} \\end{bmatrix}

其中 ( a_{ij} ) 表示第 ( i ) 行第 ( j ) 列的元素。


二、常见矩阵类型

类型 定义说明
方阵 行数 = 列数(如 ( 3 \times 3 ))
零矩阵 所有元素为 0
单位矩阵 ( I ) 主对角线为 1,其余为 0(如 ( I_3 = \begin{bmatrix}1 & 0 & 0\0 & 1 & 0\0 & 0 & 1\end{bmatrix} ))
对角矩阵 非对角线元素全为 0
对称矩阵 ( A = A^T )(转置等于自身)
可逆矩阵 存在矩阵 ( B ) 使得 ( AB = BA = I )

三、矩阵的基本运算与公式

1. 矩阵加法(同维度)

A + B = \[a_{ij} + b_{ij}

]

例子:

\\begin{bmatrix}1 \& 2\\3 \& 4\\end{bmatrix} + \\begin{bmatrix}5 \& 6\\7 \& 8\\end{bmatrix} = \\begin{bmatrix}6 \& 8\\10 \& 12\\end{bmatrix}


2. 矩阵数乘

kA = \[k \\cdot a_{ij}

]

例子:

3 \\cdot \\begin{bmatrix}1 \& 2\\3 \& 4\\end{bmatrix} = \\begin{bmatrix}3 \& 6\\9 \& 12\\end{bmatrix}


3. 矩阵乘法(维度匹配:( A ) 是 ( m \times n ),( B ) 是 ( n \times p ))

(AB)*{ij} = \\sum* {k=1}\^n a_{ik} b_{kj}

例子:

A = \\begin{bmatrix}1 \& 2\\3 \& 4\\end{bmatrix}, \\quad B = \\begin{bmatrix}5 \& 6\\7 \& 8\\end{bmatrix}

AB = \\begin{bmatrix} 1 \\cdot 5 + 2 \\cdot 7 \& 1 \\cdot 6 + 2 \\cdot 8 \\ 3 \\cdot 5 + 4 \\cdot 7 \& 3 \\cdot 6 + 4 \\cdot 8 \\end{bmatrix} = \\begin{bmatrix}19 \& 22\\43 \& 50\\end{bmatrix}


4. 矩阵转置

(A\^T)*{ij} = a* {ji}

例子:

A = \\begin{bmatrix}1 \& 2 \& 3\\4 \& 5 \& 6\\end{bmatrix}, \\quad A\^T = \\begin{bmatrix}1 \& 4\\2 \& 5\\3 \& 6\\end{bmatrix}


5. 矩阵的逆(仅方阵且行列式非零)

若 ( A ) 可逆,则存在 ( A^{-1} ) 使得:

A A\^{-1} = A\^{-1} A = I

2×2 矩阵求逆公式:

A = \\begin{bmatrix}a \& b\\c \& d\\end{bmatrix}, \\quad A\^{-1} = \\frac{1}{ad - bc} \\begin{bmatrix}d \& -b\\-c \& a\\end{bmatrix}

例子:

A = \\begin{bmatrix}1 \& 2\\3 \& 4\\end{bmatrix}, \\quad \\det(A) = 1 \\cdot 4 - 2 \\cdot 3 = -2

A\^{-1} = \\frac{1}{-2} \\begin{bmatrix}4 \& -2\\-3 \& 1\\end{bmatrix} = \\begin{bmatrix}-2 \& 1\\1.5 \& -0.5\\end{bmatrix}


6. 行列式(Determinant)
  • 对于 ( 2 \times 2 ) 矩阵:

\\det\\begin{bmatrix}a \& b\\c \& d\\end{bmatrix} = ad - bc

  • 对于 ( 3 \times 3 ) 矩阵(按第一行展开):

\\det\\begin{bmatrix} a \& b \& c \\ d \& e \& f \\ g \& h \& i \\end{bmatrix} = a(ei - fh) - b(di - fg) + c(dh - eg)


四、应用举例:解线性方程组

问题: 解方程组:

\\begin{cases} x + 2y = 5 \\ 3x + 4y = 6 \\end{cases}

矩阵形式: ( A\vec{x} = \vec{b} )

A = \\begin{bmatrix}1 \& 2\\3 \& 4\\end{bmatrix}, \\quad \\vec{x} = \\begin{bmatrix}x\\y\\end{bmatrix}, \\quad \\vec{b} = \\begin{bmatrix}5\\6\\end{bmatrix}

解法: ( \vec{x} = A^{-1} \vec{b} )

我们已算出:

A\^{-1} = \\begin{bmatrix}-2 \& 1\\1.5 \& -0.5\\end{bmatrix}

\\vec{x} = \\begin{bmatrix}-2 \& 1\\1.5 \& -0.5\\end{bmatrix} \\begin{bmatrix}5\\6\\end{bmatrix} = \\begin{bmatrix}-2 \\cdot 5 + 1 \\cdot 6\\1.5 \\cdot 5 - 0.5 \\cdot 6\\end{bmatrix} = \\begin{bmatrix}-4\\4.5\\end{bmatrix}

解得: ( x = -4, \quad y = 4.5 )


五、总结

概念/运算 关键公式/性质
矩阵乘法 ( (AB){ij} = \sum_k a{ik} b_{kj} )
逆矩阵 ( A^{-1} A = I ),仅当 ( \det A \ne 0 )
行列式 判断可逆性,计算体积缩放因子
转置 ( (A^T){ij} = a{ji} )
线性方程组 ( A\vec{x} = \vec{b} \Rightarrow \vec{x} = A^{-1} \vec{b} )(若可逆)

相关推荐
king王一帅7 分钟前
Incremark Solid 版本上线:Vue/React/Svelte/Solid 四大框架,统一体验
前端·javascript·人工智能
泰迪智能科技3 小时前
分享|职业技术培训|数字技术应用工程师快问快答
人工智能
Dxy12393102164 小时前
如何给AI提问:让机器高效理解你的需求
人工智能
少林码僧4 小时前
2.31 机器学习神器项目实战:如何在真实项目中应用XGBoost等算法
人工智能·python·算法·机器学习·ai·数据挖掘
钱彬 (Qian Bin)4 小时前
项目实践15—全球证件智能识别系统(切换为Qwen3-VL-8B-Instruct图文多模态大模型)
人工智能·算法·机器学习·多模态·全球证件识别
没学上了5 小时前
CNNMNIST
人工智能·深度学习
宝贝儿好5 小时前
【强化学习】第六章:无模型控制:在轨MC控制、在轨时序差分学习(Sarsa)、离轨学习(Q-learning)
人工智能·python·深度学习·学习·机器学习·机器人
智驱力人工智能5 小时前
守护流动的规则 基于视觉分析的穿越导流线区检测技术工程实践 交通路口导流区穿越实时预警技术 智慧交通部署指南
人工智能·opencv·安全·目标检测·计算机视觉·cnn·边缘计算
AI产品备案5 小时前
生成式人工智能大模型备案制度与发展要求
人工智能·深度学习·大模型备案·算法备案·大模型登记
AC赳赳老秦5 小时前
DeepSeek 私有化部署避坑指南:敏感数据本地化处理与合规性检测详解
大数据·开发语言·数据库·人工智能·自动化·php·deepseek