Python基础02-掌握HTTP API的秘诀

在下面文案基础上扩展,写一篇技术博客,标题要有吸引力?

标题:

在Python中,使用HTTP API已成为一种常见的操作。本文将深入探讨如何使用Python的requests库与HTTP API进行交互。我们将学习如何发送GET和POST请求、处理查询参数、处理HTTP错误、设置请求超时、使用请求头、处理JSON有效负载、处理响应编码、使用会话、处理重定向以及流式处理大型响应。

1. 基本GET请求

要使用GET请求从API端点获取数据,可以使用以下代码:

import requests
response = requests.get('https://api.intumu.com/data')
data = response.json()  # 假设响应为JSON
print(data)

2. 带查询参数的GET请求

要发送带查询参数的GET请求,可以使用以下代码:

import requests
params = {'key1': 'value1', 'key2': 'value2'}
response = requests.get('https://api.intumu.com/search', params=params)
data = response.json()
print(data)

3. 处理HTTP错误

要优雅地处理可能的HTTP错误,可以使用以下代码:

import requests
response = requests.get('https://api.intumu.com/data')
try:
    response.raise_for_status()  # 如果状态为4xx或5xx,则引发HTTPError
    data = response.json()
    print(data)
except requests.exceptions.HTTPError as err:
    print(f'HTTP错误:{err}')

4. 为请求设置超时

要为API请求设置超时以避免无限期挂起,可以使用以下代码:

import requests
try:
    response = requests.get('https://api.intumu.com/data', timeout=5)  # 超时时间(秒)
    data = response.json()
    print(data)
except requests.exceptions.Timeout:
    print('请求超时')

5. 在请求中使用头部

要在请求中包含头部(例如,进行身份验证),可以使用以下代码:

import requests
headers = {'Authorization': 'Bearer YOUR_ACCESS_TOKEN'}
response = requests.get('https://api.intumu.com/protected', headers=headers)
data = response.json()
print(data)

6. 使用JSON有效负载的POST请求

要使用POST请求将数据发送到API端点并使用JSON有效负载,可以使用以下代码:

import requests
payload = {'key1': 'value1', 'key2': 'value2'}
headers = {'Content-Type': 'application/json'}
response = requests.post('https://api.intumu.com/submit', json=payload, headers=headers)
print(response.json())

7. 处理响应编码

要正确处理响应编码,可以使用以下代码:

import requests
response = requests.get('https://api.intumu.com/data')
response.encoding = 'utf-8'  # 将编码设置为与预期响应格式匹配
data = response.text
print(data)

8. 使用会话与请求

要使用会话对象进行多个请求到同一主机,从而提高性能,可以使用以下代码:

import requests
with requests.Session() as session:
    session.headers.update({'Authorization': 'Bearer YOUR_ACCESS_TOKEN'})
    response = session.get('https://api.intumu.com/data')
    print(response.json())

9. 处理重定向

要处理或禁用重定向,可以使用以下代码:

import requests
response = requests.get('https://api.intumu.com/data', allow_redirects=False)
print(response.status_code)

10. 流式处理大型响应

要将大型响应流式处理并分块处理,而不是将其全部加载到内存中,可以使用以下代码:

import requests
response = requests.get('https://api.intumu.com/large-data', stream=True)
for chunk in response.iter_content(chunk_size=1024):
    process(chunk)  # 将'process'替换为您的实际处理函数

通过掌握这些技巧,您可以更有效地使用Python与HTTP API进行交互。学习这些操作将使您能够处理各种API请求和响应,从而使您的应用程序更具灵活性和功能性。

civilpy:Python数据分析及可视化实例目录944 赞同 · 36 评论文章​编辑

相关推荐
nuclear201124 分钟前
使用Python 在Excel中创建和取消数据分组 - 详解
python·excel数据分组·创建excel分组·excel分类汇总·excel嵌套分组·excel大纲级别·取消excel分组
Lucky小小吴39 分钟前
有关django、python版本、sqlite3版本冲突问题
python·django·sqlite
GIS 数据栈1 小时前
每日一书 《基于ArcGIS的Python编程秘笈》
开发语言·python·arcgis
爱分享的码瑞哥1 小时前
Python爬虫中的IP封禁问题及其解决方案
爬虫·python·tcp/ip
傻啦嘿哟2 小时前
如何使用 Python 开发一个简单的文本数据转换为 Excel 工具
开发语言·python·excel
B站计算机毕业设计超人2 小时前
计算机毕业设计SparkStreaming+Kafka旅游推荐系统 旅游景点客流量预测 旅游可视化 旅游大数据 Hive数据仓库 机器学习 深度学习
大数据·数据仓库·hadoop·python·kafka·课程设计·数据可视化
IT古董3 小时前
【人工智能】Python在机器学习与人工智能中的应用
开发语言·人工智能·python·机器学习
湫ccc3 小时前
《Python基础》之pip换国内镜像源
开发语言·python·pip
hakesashou3 小时前
Python中常用的函数介绍
java·网络·python
菜鸟的人工智能之路3 小时前
极坐标气泡图:医学数据分析的可视化新视角
python·数据分析·健康医疗