机器学习实验------随机森林

第1关:Bagging

任务描述

本关任务:补充 python 代码,完成 BaggingClassifier 类中的 fit 和 predict 函数。请不要修改 Begin-End 段之外的代码。

python 复制代码
import numpy as np
from collections import Counter
from sklearn.tree import DecisionTreeClassifier
class BaggingClassifier():
    def __init__(self, n_model=10):
        '''
        初始化函数
        '''
        #分类器的数量,默认为10
        self.n_model = n_model
        #用于保存模型的列表,训练好分类器后将对象append进去即可
        self.models = []
    def fit(self, feature, label):
        '''
        训练模型
        :param feature: 训练数据集所有特征组成的ndarray
        :param label:训练数据集中所有标签组成的ndarray
        :return: None
        '''
        #************* Begin ************#
        for i in range(self.n_model):
            m = len(feature)
            index = np.random.choice(m, m)
            sample_data = feature[index]
            sample_lable = label[index]
            model = DecisionTreeClassifier()
            model = model.fit(sample_data, sample_lable)
            self.models.append(model)
        #************* End **************#
    def predict(self, feature):
        '''
        :param feature:训练数据集所有特征组成的ndarray
        :return:预测结果,如np.array([0, 1, 2, 2, 1, 0])
        '''
        #************* Begin ************#
        result = []
        vote = []
        for model in self.models:
            r = model.predict(feature)
            vote.append(r)
        vote = np.array(vote)
        for i in range(len(feature)):
            v = sorted(Counter(vote[:, i]).items(), key=lambda x: x[1], reverse=True)
            result.append(v[0][0])
        return np.array(result)
        #************* End **************#

第2关:随机森林算法流程

任务描述

本关任务:补充 python 代码,完成 RandomForestClassifier 类中的 fit 和 predict 函数。请不要修改 Begin-End 段之外的代码。

python 复制代码
import numpy as np
from collections import  Counter
from sklearn.tree import DecisionTreeClassifier
class RandomForestClassifier():
    def __init__(self, n_model=10):
        '''
        初始化函数
        '''
        #分类器的数量,默认为10
        self.n_model = n_model
        #用于保存模型的列表,训练好分类器后将对象append进去即可
        self.models = []
        #用于保存决策树训练时随机选取的列的索引
        self.col_indexs = []
    def fit(self, feature, label):
        '''
        训练模型
        :param feature: 训练数据集所有特征组成的ndarray
        :param label:训练数据集中所有标签组成的ndarray
        :return: None
        '''
        #************* Begin ************#
        for i in range(self.n_model):
            m = len(feature)
            index = np.random.choice(m, m)
            col_index = np.random.permutation(len(feature[0]))[:int(np.log2(len(feature[0])))]
            sample_data = feature[index]
            sample_data = sample_data[:, col_index]
            sample_lable = label[index]
            model = DecisionTreeClassifier()
            model = model.fit(sample_data, sample_lable)
            self.models.append(model)
            self.col_indexs.append(col_index)
        #************* End **************#
    def predict(self, feature):
        '''
        :param feature:训练数据集所有特征组成的ndarray
        :return:预测结果,如np.array([0, 1, 2, 2, 1, 0])
        '''
        #************* Begin ************#
        result = []
        vote = []
        for i, model in enumerate(self.models):
            f = feature[:, self.col_indexs[i]]
            r = model.predict(f)
            vote.append(r)
        vote = np.array(vote)
        for i in range(len(feature)):
            v = sorted(Counter(vote[:, i]).items(), key=lambda x: x[1], reverse=True)
            result.append(v[0][0])
        return np.array(result)
        #************* End **************#

第3关:手写数字识别

任务描述

本关任务:使用 sklearn 中的 RandomForestClassifier 类完成手写数字识别任务。请不要修改Begin-End段之外的代码。

python 复制代码
from sklearn.ensemble import RandomForestClassifier
import numpy as np
 
def digit_predict(train_image, train_label, test_image):
    '''
    实现功能:训练模型并输出预测结果
    :param train_image: 包含多条训练样本的样本集,类型为ndarray,shape为[-1, 8, 8]
    :param train_label: 包含多条训练样本标签的标签集,类型为ndarray
    :param test_image: 包含多条测试样本的测试集,类型为ndarry
    :return: test_image对应的预测标签,类型为ndarray
    '''
 
    #************* Begin ************#
    X = np.reshape(train_image, newshape=(-1, 64))
    clf = RandomForestClassifier(n_estimators=500, max_depth=10)
    clf.fit(X, y=train_label)
    return clf.predict(test_image)
 
    #************* End **************#
相关推荐
心易行者2 分钟前
在 Claude 4.6 发布的当下,一个不懂编程的人聊聊 Claude Code:当 AI 终于学会自己动手干活
人工智能
子榆.2 分钟前
CANN 性能分析与调优实战:使用 msprof 定位瓶颈,榨干硬件每一分算力
大数据·网络·人工智能
爱喝白开水a3 分钟前
前端AI自动化测试:brower-use调研让大模型帮你做网页交互与测试
前端·人工智能·大模型·prompt·交互·agent·rag
学易7 分钟前
第十五节.别人的工作流,如何使用和调试(上)?(2类必现报错/缺失节点/缺失模型/思路/实操/通用调试步骤)
人工智能·ai作画·stable diffusion·报错·comfyui·缺失节点
空白诗7 分钟前
CANN ops-nn 算子解读:大语言模型推理中的 MatMul 矩阵乘实现
人工智能·语言模型·矩阵
空白诗13 分钟前
CANN ops-nn 算子解读:AIGC 风格迁移中的 BatchNorm 与 InstanceNorm 实现
人工智能·ai
新芒14 分钟前
暖通行业两位数下滑,未来靠什么赢?
大数据·人工智能
B站_计算机毕业设计之家17 分钟前
豆瓣电影数据采集分析推荐系统 | Python Vue Flask框架 LSTM Echarts多技术融合开发 毕业设计源码 计算机
vue.js·python·机器学习·flask·echarts·lstm·推荐算法
weixin_4462608522 分钟前
掌握 Claude Code Hooks:让 AI 变得更聪明!
人工智能
小白|24 分钟前
CANN性能调优实战:从Profiling到极致优化的完整方案
人工智能