机器学习实验------随机森林

第1关:Bagging

任务描述

本关任务:补充 python 代码,完成 BaggingClassifier 类中的 fit 和 predict 函数。请不要修改 Begin-End 段之外的代码。

python 复制代码
import numpy as np
from collections import Counter
from sklearn.tree import DecisionTreeClassifier
class BaggingClassifier():
    def __init__(self, n_model=10):
        '''
        初始化函数
        '''
        #分类器的数量,默认为10
        self.n_model = n_model
        #用于保存模型的列表,训练好分类器后将对象append进去即可
        self.models = []
    def fit(self, feature, label):
        '''
        训练模型
        :param feature: 训练数据集所有特征组成的ndarray
        :param label:训练数据集中所有标签组成的ndarray
        :return: None
        '''
        #************* Begin ************#
        for i in range(self.n_model):
            m = len(feature)
            index = np.random.choice(m, m)
            sample_data = feature[index]
            sample_lable = label[index]
            model = DecisionTreeClassifier()
            model = model.fit(sample_data, sample_lable)
            self.models.append(model)
        #************* End **************#
    def predict(self, feature):
        '''
        :param feature:训练数据集所有特征组成的ndarray
        :return:预测结果,如np.array([0, 1, 2, 2, 1, 0])
        '''
        #************* Begin ************#
        result = []
        vote = []
        for model in self.models:
            r = model.predict(feature)
            vote.append(r)
        vote = np.array(vote)
        for i in range(len(feature)):
            v = sorted(Counter(vote[:, i]).items(), key=lambda x: x[1], reverse=True)
            result.append(v[0][0])
        return np.array(result)
        #************* End **************#

第2关:随机森林算法流程

任务描述

本关任务:补充 python 代码,完成 RandomForestClassifier 类中的 fit 和 predict 函数。请不要修改 Begin-End 段之外的代码。

python 复制代码
import numpy as np
from collections import  Counter
from sklearn.tree import DecisionTreeClassifier
class RandomForestClassifier():
    def __init__(self, n_model=10):
        '''
        初始化函数
        '''
        #分类器的数量,默认为10
        self.n_model = n_model
        #用于保存模型的列表,训练好分类器后将对象append进去即可
        self.models = []
        #用于保存决策树训练时随机选取的列的索引
        self.col_indexs = []
    def fit(self, feature, label):
        '''
        训练模型
        :param feature: 训练数据集所有特征组成的ndarray
        :param label:训练数据集中所有标签组成的ndarray
        :return: None
        '''
        #************* Begin ************#
        for i in range(self.n_model):
            m = len(feature)
            index = np.random.choice(m, m)
            col_index = np.random.permutation(len(feature[0]))[:int(np.log2(len(feature[0])))]
            sample_data = feature[index]
            sample_data = sample_data[:, col_index]
            sample_lable = label[index]
            model = DecisionTreeClassifier()
            model = model.fit(sample_data, sample_lable)
            self.models.append(model)
            self.col_indexs.append(col_index)
        #************* End **************#
    def predict(self, feature):
        '''
        :param feature:训练数据集所有特征组成的ndarray
        :return:预测结果,如np.array([0, 1, 2, 2, 1, 0])
        '''
        #************* Begin ************#
        result = []
        vote = []
        for i, model in enumerate(self.models):
            f = feature[:, self.col_indexs[i]]
            r = model.predict(f)
            vote.append(r)
        vote = np.array(vote)
        for i in range(len(feature)):
            v = sorted(Counter(vote[:, i]).items(), key=lambda x: x[1], reverse=True)
            result.append(v[0][0])
        return np.array(result)
        #************* End **************#

第3关:手写数字识别

任务描述

本关任务:使用 sklearn 中的 RandomForestClassifier 类完成手写数字识别任务。请不要修改Begin-End段之外的代码。

python 复制代码
from sklearn.ensemble import RandomForestClassifier
import numpy as np
 
def digit_predict(train_image, train_label, test_image):
    '''
    实现功能:训练模型并输出预测结果
    :param train_image: 包含多条训练样本的样本集,类型为ndarray,shape为[-1, 8, 8]
    :param train_label: 包含多条训练样本标签的标签集,类型为ndarray
    :param test_image: 包含多条测试样本的测试集,类型为ndarry
    :return: test_image对应的预测标签,类型为ndarray
    '''
 
    #************* Begin ************#
    X = np.reshape(train_image, newshape=(-1, 64))
    clf = RandomForestClassifier(n_estimators=500, max_depth=10)
    clf.fit(X, y=train_label)
    return clf.predict(test_image)
 
    #************* End **************#
相关推荐
rit84324992 分钟前
基于MATLAB实现基于距离的离群点检测算法
人工智能·算法·matlab
初学小刘1 小时前
深度学习:从图片数据到模型训练(十分类)
人工智能·深度学习
递归不收敛1 小时前
大语言模型(LLM)入门笔记:嵌入向量与位置信息
人工智能·笔记·语言模型
之墨_2 小时前
【大语言模型】—— 自注意力机制及其变体(交叉注意力、因果注意力、多头注意力)的代码实现
人工智能·语言模型·自然语言处理
从孑开始3 小时前
ManySpeech.MoonshineAsr 使用指南
人工智能·ai·c#·.net·私有化部署·语音识别·onnx·asr·moonshine
涛涛讲AI3 小时前
一段音频多段字幕,让音频能够流畅自然对应字幕 AI生成视频,扣子生成剪映视频草稿
人工智能·音视频·语音识别
可触的未来,发芽的智生3 小时前
新奇特:黑猫警长的纳米世界,忆阻器与神经网络的智慧
javascript·人工智能·python·神经网络·架构
悟乙己3 小时前
MLops | 基于AWS Lambda 架构构建强大的机器学习(ML)血缘关系
机器学习·架构·aws
WWZZ20254 小时前
快速上手大模型:机器学习2(一元线性回归、代价函数、梯度下降法)
人工智能·算法·机器学习·计算机视觉·机器人·大模型·slam
AKAMAI4 小时前
数据孤岛破局之战 :跨业务分析的难题攻坚
运维·人工智能·云计算