并查集的进一步优化

并查集是一种用于处理不相交集合的数据结构。它支持两种操作:查找(Find)和合(Union)。 查找操作用于确定某个元素属于哪个子集,而合并操作则用于将两个子集合并为一个集合。本文将介绍并查集的进一步优化方法:路径压缩与按秩合并。

一、路径压缩:

路径压缩是一种优化查找操作的方法。在传统的并查集中,查找操作的时间复杂度为O(logn),其中n是集合的数量。通过路径压缩,我们可以将查找操作的时间复杂度降低到接近O(1)。

路径压缩的基本思想是在执行查找操作时,将查找路径上的每个节点直接连接到根节点。这样,下次查找同一个节点时,就可以直接找到根节点,从而减少查找时间。

代码实现:

cs 复制代码
#include <stdio.h>

int find(int x, int parent[]) {
    if (parent[x] == x) {
        return x;
    } else {
        parent[x] = find(parent[x], parent); // 路径压缩
        return parent[x];
    }
}

二、 按秩合并:

按秩合并是一种优化合并操作的方法。在传统的并查集中,合并操作的时间复杂度为O(logn),其中n是集合的数量。通过按秩合并,我们可以将合并操作的时间复杂度降低到接近O(1)。

按秩合并的基本思想是在执行合并操作时,总是将较小的树合并到较大的树中。这样,树的高度会减小,从而减少合并时间。

代码实现:

cs 复制代码
#include <stdio.h>

int rank[MAX_SIZE]; // 存储每个根节点的秩

void union(int x, int y, int parent[]) {
    int rootX = find(x, parent);
    int rootY = find(y, parent);

    if (rootX != rootY) {
        if (rank[rootX] > rank[rootY]) {
            parent[rootY] = rootX;
        } else if (rank[rootX] < rank[rootY]) {
            parent[rootX] = rootY;
        } else {
            parent[rootY] = rootX;
            rank[rootX]++;
        }
    }
}

三、总结:

通过路径压缩和按秩合并,我们可以将并查集的查找和合并操作的时间复杂度降低到接近O(1)。这使得并查集在处理大规模数据时更加高效。在实际使用中,我们可以根据具体问题选择合适的优化方法,以提高算法的性能。

相关推荐
虾..2 小时前
Linux 简单日志程序
linux·运维·算法
Trent19852 小时前
影楼精修-眼镜祛反光算法详解
图像处理·人工智能·算法·计算机视觉·aigc
蓝色汪洋2 小时前
经典修路问题
开发语言·c++·算法
csuzhucong2 小时前
122魔方、123魔方
算法
Salt_07282 小时前
DAY 40 早停策略和模型权重的保存
人工智能·python·算法·机器学习
卜锦元2 小时前
Golang后端性能优化手册(第三章:代码层面性能优化)
开发语言·数据结构·后端·算法·性能优化·golang
Binky6782 小时前
力扣--回溯篇(2)
算法·leetcode·职场和发展
De-Alf3 小时前
Megatron-LM学习笔记(6)Megatron Model Attention注意力与MLA
笔记·学习·算法·ai
2401_841495643 小时前
【LeetCode刷题】打家劫舍
数据结构·python·算法·leetcode·动态规划·数组·传统dp数组
冰西瓜6003 小时前
STL——vector
数据结构·c++·算法