并查集的进一步优化

并查集是一种用于处理不相交集合的数据结构。它支持两种操作:查找(Find)和合(Union)。 查找操作用于确定某个元素属于哪个子集,而合并操作则用于将两个子集合并为一个集合。本文将介绍并查集的进一步优化方法:路径压缩与按秩合并。

一、路径压缩:

路径压缩是一种优化查找操作的方法。在传统的并查集中,查找操作的时间复杂度为O(logn),其中n是集合的数量。通过路径压缩,我们可以将查找操作的时间复杂度降低到接近O(1)。

路径压缩的基本思想是在执行查找操作时,将查找路径上的每个节点直接连接到根节点。这样,下次查找同一个节点时,就可以直接找到根节点,从而减少查找时间。

代码实现:

cs 复制代码
#include <stdio.h>

int find(int x, int parent[]) {
    if (parent[x] == x) {
        return x;
    } else {
        parent[x] = find(parent[x], parent); // 路径压缩
        return parent[x];
    }
}

二、 按秩合并:

按秩合并是一种优化合并操作的方法。在传统的并查集中,合并操作的时间复杂度为O(logn),其中n是集合的数量。通过按秩合并,我们可以将合并操作的时间复杂度降低到接近O(1)。

按秩合并的基本思想是在执行合并操作时,总是将较小的树合并到较大的树中。这样,树的高度会减小,从而减少合并时间。

代码实现:

cs 复制代码
#include <stdio.h>

int rank[MAX_SIZE]; // 存储每个根节点的秩

void union(int x, int y, int parent[]) {
    int rootX = find(x, parent);
    int rootY = find(y, parent);

    if (rootX != rootY) {
        if (rank[rootX] > rank[rootY]) {
            parent[rootY] = rootX;
        } else if (rank[rootX] < rank[rootY]) {
            parent[rootX] = rootY;
        } else {
            parent[rootY] = rootX;
            rank[rootX]++;
        }
    }
}

三、总结:

通过路径压缩和按秩合并,我们可以将并查集的查找和合并操作的时间复杂度降低到接近O(1)。这使得并查集在处理大规模数据时更加高效。在实际使用中,我们可以根据具体问题选择合适的优化方法,以提高算法的性能。

相关推荐
蜡笔小马8 分钟前
10.Boost.Geometry R-tree 空间索引详解
开发语言·c++·算法·r-tree
唐梓航-求职中17 分钟前
编程-技术-算法-leetcode-288. 单词的唯一缩写
算法·leetcode·c#
仟濹18 分钟前
【算法打卡day3 | 2026-02-08 周日 | 算法: BFS】3_卡码网99_计数孤岛_BFS | 4_卡码网100_最大岛屿的面积DFS
算法·深度优先·宽度优先
Ll130452529822 分钟前
Leetcode二叉树part4
算法·leetcode·职场和发展
Queenie_Charlie29 分钟前
stars(树状数组)
数据结构·c++·树状数组
颜酱31 分钟前
二叉树遍历思维实战
javascript·后端·算法
宝贝儿好33 分钟前
第二章: 图像处理基本操作
算法
静听山水44 分钟前
Redis核心数据结构-Set
数据结构·数据库·redis
小陈phd44 分钟前
多模态大模型学习笔记(二)——机器学习十大经典算法:一张表看懂分类 / 回归 / 聚类 / 降维
学习·算法·机器学习
@––––––1 小时前
力扣hot100—系列4-贪心算法
算法·leetcode·贪心算法