并查集的进一步优化

并查集是一种用于处理不相交集合的数据结构。它支持两种操作:查找(Find)和合(Union)。 查找操作用于确定某个元素属于哪个子集,而合并操作则用于将两个子集合并为一个集合。本文将介绍并查集的进一步优化方法:路径压缩与按秩合并。

一、路径压缩:

路径压缩是一种优化查找操作的方法。在传统的并查集中,查找操作的时间复杂度为O(logn),其中n是集合的数量。通过路径压缩,我们可以将查找操作的时间复杂度降低到接近O(1)。

路径压缩的基本思想是在执行查找操作时,将查找路径上的每个节点直接连接到根节点。这样,下次查找同一个节点时,就可以直接找到根节点,从而减少查找时间。

代码实现:

cs 复制代码
#include <stdio.h>

int find(int x, int parent[]) {
    if (parent[x] == x) {
        return x;
    } else {
        parent[x] = find(parent[x], parent); // 路径压缩
        return parent[x];
    }
}

二、 按秩合并:

按秩合并是一种优化合并操作的方法。在传统的并查集中,合并操作的时间复杂度为O(logn),其中n是集合的数量。通过按秩合并,我们可以将合并操作的时间复杂度降低到接近O(1)。

按秩合并的基本思想是在执行合并操作时,总是将较小的树合并到较大的树中。这样,树的高度会减小,从而减少合并时间。

代码实现:

cs 复制代码
#include <stdio.h>

int rank[MAX_SIZE]; // 存储每个根节点的秩

void union(int x, int y, int parent[]) {
    int rootX = find(x, parent);
    int rootY = find(y, parent);

    if (rootX != rootY) {
        if (rank[rootX] > rank[rootY]) {
            parent[rootY] = rootX;
        } else if (rank[rootX] < rank[rootY]) {
            parent[rootX] = rootY;
        } else {
            parent[rootY] = rootX;
            rank[rootX]++;
        }
    }
}

三、总结:

通过路径压缩和按秩合并,我们可以将并查集的查找和合并操作的时间复杂度降低到接近O(1)。这使得并查集在处理大规模数据时更加高效。在实际使用中,我们可以根据具体问题选择合适的优化方法,以提高算法的性能。

相关推荐
sin_hielo1 分钟前
leetcode 3047
数据结构·算法·leetcode
JAI科研3 分钟前
MICCAI 2025 IUGC 图像超声关键点检测及超声参数测量挑战赛
人工智能·深度学习·算法·计算机视觉·自然语言处理·视觉检测·transformer
mit6.8244 分钟前
思维|状压dp
算法
天赐学c语言4 分钟前
1.17 - 排序链表 && 虚函数指针是什么时候初始化的
数据结构·c++·算法·链表·leecode
wu_asia10 分钟前
C语言实现子串出现次数统计
算法
一条大祥脚14 分钟前
一题N解 两种分块|四维莫队|容斥+二维莫队|希尔伯特排序莫队|zorder排序莫队
数据结构·c++·算法
Remember_99316 分钟前
【数据结构】二叉树:从基础到应用全面解析
java·数据结构·b树·算法·leetcode·链表
2501_9403152617 分钟前
蓝桥云课:分巧克力(二分查找法)
数据结构·c++·算法
csuzhucong17 分钟前
2种闪蝶魔方(待更新)
算法
Swift社区26 分钟前
LeetCode 377 组合总和 Ⅳ
算法·leetcode·职场和发展