并查集的进一步优化

并查集是一种用于处理不相交集合的数据结构。它支持两种操作:查找(Find)和合(Union)。 查找操作用于确定某个元素属于哪个子集,而合并操作则用于将两个子集合并为一个集合。本文将介绍并查集的进一步优化方法:路径压缩与按秩合并。

一、路径压缩:

路径压缩是一种优化查找操作的方法。在传统的并查集中,查找操作的时间复杂度为O(logn),其中n是集合的数量。通过路径压缩,我们可以将查找操作的时间复杂度降低到接近O(1)。

路径压缩的基本思想是在执行查找操作时,将查找路径上的每个节点直接连接到根节点。这样,下次查找同一个节点时,就可以直接找到根节点,从而减少查找时间。

代码实现:

cs 复制代码
#include <stdio.h>

int find(int x, int parent[]) {
    if (parent[x] == x) {
        return x;
    } else {
        parent[x] = find(parent[x], parent); // 路径压缩
        return parent[x];
    }
}

二、 按秩合并:

按秩合并是一种优化合并操作的方法。在传统的并查集中,合并操作的时间复杂度为O(logn),其中n是集合的数量。通过按秩合并,我们可以将合并操作的时间复杂度降低到接近O(1)。

按秩合并的基本思想是在执行合并操作时,总是将较小的树合并到较大的树中。这样,树的高度会减小,从而减少合并时间。

代码实现:

cs 复制代码
#include <stdio.h>

int rank[MAX_SIZE]; // 存储每个根节点的秩

void union(int x, int y, int parent[]) {
    int rootX = find(x, parent);
    int rootY = find(y, parent);

    if (rootX != rootY) {
        if (rank[rootX] > rank[rootY]) {
            parent[rootY] = rootX;
        } else if (rank[rootX] < rank[rootY]) {
            parent[rootX] = rootY;
        } else {
            parent[rootY] = rootX;
            rank[rootX]++;
        }
    }
}

三、总结:

通过路径压缩和按秩合并,我们可以将并查集的查找和合并操作的时间复杂度降低到接近O(1)。这使得并查集在处理大规模数据时更加高效。在实际使用中,我们可以根据具体问题选择合适的优化方法,以提高算法的性能。

相关推荐
充值修改昵称4 分钟前
数据结构基础:从二叉树到多叉树数据结构进阶
数据结构·python·算法
Deepoch16 分钟前
Deepoc数学大模型:发动机行业的算法引擎
人工智能·算法·机器人·发动机·deepoc·发动机行业
-To be number.wan30 分钟前
【数据结构真题解析】哈希表中等难度挑战:冲突处理与查找效率深度剖析
数据结构·哈希算法
csdn_aspnet32 分钟前
C 语言的优雅回归:从零手造数据结构
c语言·数据结构
浅念-1 小时前
C语言小知识——指针(3)
c语言·开发语言·c++·经验分享·笔记·学习·算法
Hcoco_me1 小时前
大模型面试题84:是否了解 OpenAI 提出的Clip,它和SigLip有什么区别?为什么SigLip效果更好?
人工智能·算法·机器学习·chatgpt·机器人
BHXDML1 小时前
第九章:EM 算法
人工智能·算法·机器学习
却道天凉_好个秋2 小时前
目标检测算法与原理(三):PyTorch实现迁移学习
pytorch·算法·目标检测
qeen872 小时前
【数据结构】单链表及双向链表的解析与实现
数据结构·链表
无限进步_3 小时前
【C++】大数相加算法详解:从字符串加法到内存布局的思考
开发语言·c++·windows·git·算法·github·visual studio