机器学习——逻辑回归

逻辑回归损失函数选择

逻辑回归通常采用交叉熵损失(也称为对数损失)而不是均方误差损失的原因主要有以下几点:

  1. 概率解释
    逻辑回归模型的输出可以被解释为属于某个类别的概率。交叉熵损失直接衡量的是模型预测概率分布与真实标签的概率分布之间的差异,这与逻辑回归的概率解释一致。
  2. 梯度优化
    逻辑回归模型使用sigmoid函数作为激活函数,其输出值在0到1之间。如果使用均方误差损失,梯度更新时会遇到梯度消失的问题,特别是当预测值接近0或1时。这是因为sigmoid函数的导数在输出接近0或1时非常小,导致梯度很小,这会使得训练过程中的权重更新非常缓慢,从而难以收敛。
  3. 损失函数的凸性
    在逻辑回归中使用交叉熵损失可以保证损失函数是凸函数,这意味着优化问题有全局最优解,并且易于使用梯度下降法等优化算法找到这个最优解。相比之下,均方误差损失在逻辑回归中不一定能保证是凸函数,可能存在多个局部最小值,使得优化更加困难。

总结来说,交叉熵损失函数在逻辑回归中被广泛采用,是因为它与逻辑回归模型的概率输出相匹配,可以提供良好的梯度信息,保证了损失函数的凸性。

相关推荐
龙山云仓1 分钟前
No095:沈括&AI:智能的科学研究与系统思维
开发语言·人工智能·python·机器学习·重构
LiYingL3 分钟前
多人对话视频生成的新发展:麻省理工学院数据集和基线模型 “CovOG
人工智能
人工智能培训6 分钟前
DNN案例一步步构建深层神经网络(二)
人工智能·神经网络·大模型·dnn·具身智能·智能体·大模型学习
TG:@yunlaoda360 云老大8 分钟前
华为云国际站代理商的GACS主要有什么作用呢?
人工智能·自然语言处理·华为云
AI营销资讯站11 分钟前
原圈科技AI营销内容生产体系助力企业降本提效新变革
大数据·人工智能
AI科技星11 分钟前
质量定义方程中条数概念的解析与经典例子计算
数据结构·人工智能·经验分享·算法·计算机视觉
啊阿狸不会拉杆12 分钟前
《数字图像处理》第8章-图像压缩和水印
图像处理·人工智能·算法·计算机视觉·数字图像处理
智航GIS13 分钟前
ArcGIS大师之路500技---034重采样算法选择
人工智能·算法·arcgis
~央千澈~13 分钟前
序章《程序员进化:AI 编程革命》——用 Cursor 驱动的游戏开发实战作者:卓伊凡
人工智能·ai编程