机器学习——逻辑回归

逻辑回归损失函数选择

逻辑回归通常采用交叉熵损失(也称为对数损失)而不是均方误差损失的原因主要有以下几点:

  1. 概率解释
    逻辑回归模型的输出可以被解释为属于某个类别的概率。交叉熵损失直接衡量的是模型预测概率分布与真实标签的概率分布之间的差异,这与逻辑回归的概率解释一致。
  2. 梯度优化
    逻辑回归模型使用sigmoid函数作为激活函数,其输出值在0到1之间。如果使用均方误差损失,梯度更新时会遇到梯度消失的问题,特别是当预测值接近0或1时。这是因为sigmoid函数的导数在输出接近0或1时非常小,导致梯度很小,这会使得训练过程中的权重更新非常缓慢,从而难以收敛。
  3. 损失函数的凸性
    在逻辑回归中使用交叉熵损失可以保证损失函数是凸函数,这意味着优化问题有全局最优解,并且易于使用梯度下降法等优化算法找到这个最优解。相比之下,均方误差损失在逻辑回归中不一定能保证是凸函数,可能存在多个局部最小值,使得优化更加困难。

总结来说,交叉熵损失函数在逻辑回归中被广泛采用,是因为它与逻辑回归模型的概率输出相匹配,可以提供良好的梯度信息,保证了损失函数的凸性。

相关推荐
永霖光电_UVLED6 小时前
NUBURU启动Q1阶段,实现40套高功率蓝光激光系统的量产
大数据·人工智能
RFG20126 小时前
20、详解Dubbo框架:消费方如何动态获取服务提供方地址?【微服务架构入门】
java·人工智能·后端·微服务·云原生·架构·dubbo
紫微AI7 小时前
适用于代理Agents的语言
人工智能·agents·新语言
CCPC不拿奖不改名7 小时前
虚拟机基础:在VMware WorkStation上安装Linux为容器化部署打基础
linux·运维·服务器·人工智能·milvus·知识库搭建·容器化部署
这是个栗子7 小时前
AI辅助编程工具(六) - CodeGeeX
人工智能·ai·codegeex
vortesnail7 小时前
超详细的云服务部署 OpenClaw 并接入飞书全流程,别再趟坑了
人工智能·程序员·openai
紫微AI7 小时前
Anthropic Claude Code 工程博客精读:构建可靠长时运行AI代理的有效框架实践
人工智能
量子-Alex7 小时前
【大模型思维链】自洽性提升语言模型中的思维链推理能力
人工智能·语言模型·自然语言处理
月光有害8 小时前
Batch 与 Mini-Batch 梯度下降的权衡与选择
人工智能
之歆8 小时前
智能体 - AI 幻觉
人工智能