机器学习——逻辑回归

逻辑回归损失函数选择

逻辑回归通常采用交叉熵损失(也称为对数损失)而不是均方误差损失的原因主要有以下几点:

  1. 概率解释
    逻辑回归模型的输出可以被解释为属于某个类别的概率。交叉熵损失直接衡量的是模型预测概率分布与真实标签的概率分布之间的差异,这与逻辑回归的概率解释一致。
  2. 梯度优化
    逻辑回归模型使用sigmoid函数作为激活函数,其输出值在0到1之间。如果使用均方误差损失,梯度更新时会遇到梯度消失的问题,特别是当预测值接近0或1时。这是因为sigmoid函数的导数在输出接近0或1时非常小,导致梯度很小,这会使得训练过程中的权重更新非常缓慢,从而难以收敛。
  3. 损失函数的凸性
    在逻辑回归中使用交叉熵损失可以保证损失函数是凸函数,这意味着优化问题有全局最优解,并且易于使用梯度下降法等优化算法找到这个最优解。相比之下,均方误差损失在逻辑回归中不一定能保证是凸函数,可能存在多个局部最小值,使得优化更加困难。

总结来说,交叉熵损失函数在逻辑回归中被广泛采用,是因为它与逻辑回归模型的概率输出相匹配,可以提供良好的梯度信息,保证了损失函数的凸性。

相关推荐
飞哥数智坊4 小时前
从CodeBuddy翻车到MasterGo救场,我的小程序UI终于焕然一新
人工智能
AKAMAI7 小时前
跳过复杂环节:Akamai应用平台让Kubernetes生产就绪——现已正式发布
人工智能·云原生·云计算
新智元8 小时前
阿里王牌 Agent 横扫 SOTA,全栈开源力压 OpenAI!博士级难题一键搞定
人工智能·openai
新智元8 小时前
刚刚,OpenAI/Gemini 共斩 ICPC 2025 金牌!OpenAI 满分碾压横扫全场
人工智能·openai
机器之心9 小时前
OneSearch,揭开快手电商搜索「一步到位」的秘技
人工智能·openai
阿里云大数据AI技术9 小时前
2025云栖大会·大数据AI参会攻略请查收!
大数据·人工智能
YourKing9 小时前
yolov11n.onnx格式模型转换与图像推理
人工智能
sans_9 小时前
NCCL的用户缓冲区注册
人工智能
sans_9 小时前
三种视角下的Symmetric Memory,下一代HPC内存模型
人工智能
算家计算10 小时前
模糊高清修复真王炸!ComfyUI-SeedVR2-Kontext(画质修复+P图)本地部署教程
人工智能·开源·aigc