机器学习——逻辑回归

逻辑回归损失函数选择

逻辑回归通常采用交叉熵损失(也称为对数损失)而不是均方误差损失的原因主要有以下几点:

  1. 概率解释
    逻辑回归模型的输出可以被解释为属于某个类别的概率。交叉熵损失直接衡量的是模型预测概率分布与真实标签的概率分布之间的差异,这与逻辑回归的概率解释一致。
  2. 梯度优化
    逻辑回归模型使用sigmoid函数作为激活函数,其输出值在0到1之间。如果使用均方误差损失,梯度更新时会遇到梯度消失的问题,特别是当预测值接近0或1时。这是因为sigmoid函数的导数在输出接近0或1时非常小,导致梯度很小,这会使得训练过程中的权重更新非常缓慢,从而难以收敛。
  3. 损失函数的凸性
    在逻辑回归中使用交叉熵损失可以保证损失函数是凸函数,这意味着优化问题有全局最优解,并且易于使用梯度下降法等优化算法找到这个最优解。相比之下,均方误差损失在逻辑回归中不一定能保证是凸函数,可能存在多个局部最小值,使得优化更加困难。

总结来说,交叉熵损失函数在逻辑回归中被广泛采用,是因为它与逻辑回归模型的概率输出相匹配,可以提供良好的梯度信息,保证了损失函数的凸性。

相关推荐
2501_94133310几秒前
YOLO11-BiFPN实现:小麦杂质检测与分类系统详解_1
人工智能·分类·数据挖掘
Mixtral1 分钟前
2026年面试记录转写工具深度测评:3款工具准确率与效率对比
人工智能·面试·职场和发展·语音识别·语音转文字
STLearner1 分钟前
AAAI 2026 | 时间序列(Time Series) 论文总结[下] (分类,异常检测,基础模型,表示学习,生成)
大数据·论文阅读·人工智能·python·深度学习·机器学习·数据挖掘
陈天伟教授2 分钟前
人工智能应用-机器视觉:绘画大师 02.深度神经网络中的内容与风格
人工智能·神经网络·dnn
l1t6 分钟前
DeepSeek总结的SQLite 数据库的版本更新历史摘要
数据库·人工智能·sqlite
晓风残月淡7 分钟前
AI生成视频变现思路总结
大数据·人工智能·音视频
2501_941329729 分钟前
人体正面检测与面部识别:基于改进GA-RPN模型的精准定位与区分技术
人工智能·计算机视觉·目标跟踪
zhengfei61117 分钟前
精选资源、工具、论文和平台,用于快速构建大型语言模型 (LLM) 和生成式人工智能
人工智能
程序员:钧念19 分钟前
深度学习与大语言模型LLM的区别
人工智能·python·深度学习·语言模型·自然语言处理·transformer·agent
数智顾问20 分钟前
(162页PPT)罗兰贝格奥迪品牌浙江和广某省市场提升战略(附下载方式)
人工智能