常见的经典目标检测

常见的经典目标检测算法主要包括:

  1. R-CNN 系列57:R-CNN(Region-based Convolutional Neural Networks)是一种经典的目标检测算法,它通过卷积神经网络(CNN)提取候选区域特征,然后使用支持向量机(SVM)进行分类。R-CNN 系列包括 R-CNN、Fast R-CNN、Faster R-CNN 和 Mask R-CNN 等,这些算法在目标检测领域有着广泛的应用和影响。

  2. YOLO 系列54:YOLO(You Only Look Once)是一种实时目标检测算法,它将目标检测任务作为一个回归问题来处理,从而能够快速检测图像中的目标。YOLO 系列包括 YOLOv1、YOLOv2、YOLOv3、YOLOv4 和 YOLOv5 等,每个版本都在性能和速度上有所提升。

  3. **SSD(Single Shot MultiBox Detector)**4:SSD 是一种"端到端"的检测算法,它在不同尺度上进行检测,能够很好地改善检测速度,满足实时性要求,并且计算精度较高。

  4. **DPM(Deformable Part-based Model)**2:DPM 是基于传统机器学习的目标检测算法,它遵循"分而治之"的检测思想,通过检测对象的不同部件来识别整个对象,曾是 VOC07、08、09 三年的检测冠军。

这些算法各有特点,R-CNN 系列算法精度较高但速度较慢,YOLO 系列算法速度快适合实时检测,SSD 算法在速度和精度之间取得了较好的平衡,而 DPM 算法则代表了传统目标检测方法的高峰。随着深度学习技术的发展,基于深度学习的目标检测算法已成为主流。

相关推荐
思通数科人工智能大模型1 天前
零售场景下的数智店商:解决盗损问题,化解隐性成本痛点
人工智能·目标检测·计算机视觉·数据挖掘·知识图谱·零售
xuehaisj2 天前
菠萝蜜果实目标检测_yolo11-C3k2-ConvFormer改进
人工智能·目标检测·目标跟踪
点PY2 天前
TR3D: Towards Real-Time Indoor 3D Object Detection论文精读
人工智能·目标检测·3d
xuehaikj3 天前
【目标检测】YOLOv10n-ADown弹孔检测与识别系统
yolo·目标检测·目标跟踪
强盛小灵通专卖员3 天前
煤矿传送带异物检测:深度学习引领煤矿安全新革命!
人工智能·目标检测·sci·研究生·煤矿安全·延毕·传送带
xuehaikj3 天前
基于YOLOv8的汽车目标检测系统实现与优化_含多种车型识别与自动驾驶应用场景
yolo·目标检测·汽车
xuehaikj3 天前
【水下目标检测】Yolov8-GDFPN实现水下气泡智能识别系统
yolo·目标检测·目标跟踪
带土13 天前
2. YOLOv5 搭建一个完整的目标检测系统核心步骤
人工智能·yolo·目标检测
AI即插即用3 天前
即插即用涨点系列 (八):AMDNet 详解!AAAI 2025 SOTA,MLP 融合多尺度分解(MDM)与 AMS 的涨点新范式。
人工智能·pytorch·深度学习·目标检测·计算机视觉·transformer
xuehaikj3 天前
基于YOLOv5-AUX的棕熊目标检测与识别系统实现
人工智能·yolo·目标检测