常见的经典目标检测

常见的经典目标检测算法主要包括:

  1. R-CNN 系列57:R-CNN(Region-based Convolutional Neural Networks)是一种经典的目标检测算法,它通过卷积神经网络(CNN)提取候选区域特征,然后使用支持向量机(SVM)进行分类。R-CNN 系列包括 R-CNN、Fast R-CNN、Faster R-CNN 和 Mask R-CNN 等,这些算法在目标检测领域有着广泛的应用和影响。

  2. YOLO 系列54:YOLO(You Only Look Once)是一种实时目标检测算法,它将目标检测任务作为一个回归问题来处理,从而能够快速检测图像中的目标。YOLO 系列包括 YOLOv1、YOLOv2、YOLOv3、YOLOv4 和 YOLOv5 等,每个版本都在性能和速度上有所提升。

  3. **SSD(Single Shot MultiBox Detector)**4:SSD 是一种"端到端"的检测算法,它在不同尺度上进行检测,能够很好地改善检测速度,满足实时性要求,并且计算精度较高。

  4. **DPM(Deformable Part-based Model)**2:DPM 是基于传统机器学习的目标检测算法,它遵循"分而治之"的检测思想,通过检测对象的不同部件来识别整个对象,曾是 VOC07、08、09 三年的检测冠军。

这些算法各有特点,R-CNN 系列算法精度较高但速度较慢,YOLO 系列算法速度快适合实时检测,SSD 算法在速度和精度之间取得了较好的平衡,而 DPM 算法则代表了传统目标检测方法的高峰。随着深度学习技术的发展,基于深度学习的目标检测算法已成为主流。

相关推荐
tainshuai4 小时前
YOLOv4 实战指南:单 GPU 训练的目标检测利器
yolo·目标检测·机器学习
夏天是冰红茶9 小时前
恶劣天气目标检测IA-YOLO
yolo·目标检测·目标跟踪
山烛1 天前
一文读懂YOLOv4:目标检测领域的技术融合与性能突破
人工智能·yolo·目标检测·计算机视觉·yolov4
TTGGGFF1 天前
机器视觉:智能车大赛视觉组技术文档——用 YOLO3 Nano 实现目标检测并部署到 OpenART
人工智能·目标检测·计算机视觉
深度学习lover1 天前
<数据集>yolo纸板缺陷识别数据集<目标检测>
python·深度学习·yolo·目标检测·计算机视觉·数据集
Coovally AI模型快速验证2 天前
IDEA研究院发布Rex-Omni:3B参数MLLM重塑目标检测,零样本性能超越DINO
人工智能·深度学习·yolo·目标检测·计算机视觉·目标跟踪
总有刁民想爱朕ha2 天前
YOLO目标检测:一种用于无人机的新型轻量级目标检测网络
yolo·目标检测·无人机
我叫侯小科3 天前
YOLOv4:目标检测界的 “集大成者”
人工智能·yolo·目标检测
麒羽7603 天前
YOLOv4:目标检测领域的 “速度与精度平衡大师”
yolo·目标检测·目标跟踪
智驱力人工智能3 天前
疲劳驾驶检测提升驾驶安全 疲劳行为检测 驾驶员疲劳检测系统 疲劳检测系统价格
人工智能·安全·目标检测·目标跟踪·视觉检测