wsl中ollama不能使用gpu加速

之前还能有gpu加速的, 突然一次发现不能加速了, 启动之后发现只能用cpu了

log

复制代码
time=2024-04-19T00:05:08.213+08:00 level=INFO source=images.go:806 msg="total blobs: 80"
time=2024-04-19T00:05:08.248+08:00 level=INFO source=images.go:813 msg="total unused blobs removed: 43"
time=2024-04-19T00:05:08.249+08:00 level=INFO source=routes.go:1110 msg="Listening on 127.0.0.1:11434 (version 0.1.29)"
time=2024-04-19T00:05:08.250+08:00 level=INFO source=payload_common.go:112 msg="Extracting dynamic libraries to /tmp/ollama3092358058/runners ..."
time=2024-04-19T00:05:15.442+08:00 level=INFO source=payload_common.go:139 msg="Dynamic LLM libraries [cpu_avx rocm_v60000 cuda_v11 cpu_avx2 cpu]"
time=2024-04-19T00:05:15.442+08:00 level=INFO source=gpu.go:77 msg="Detecting GPU type"
time=2024-04-19T00:05:15.442+08:00 level=INFO source=gpu.go:191 msg="Searching for GPU management library libnvidia-ml.so"
time=2024-04-19T00:05:17.729+08:00 level=INFO source=gpu.go:237 msg="Discovered GPU libraries: [/usr/lib/x86_64-linux-gnu/libnvidia-ml.so.535.171.04 /usr/lib/wsl/lib/libnvidia-ml.so.1 /usr/lib/wsl/drivers/nv_dispi.inf_amd64_059948e396d205d5/libnvidia-ml.so.1 /usr/lib/wsl/drivers/nv_dispi.inf_amd64_268e85175aa9e991/libnvidia-ml.so.1 /usr/lib/wsl/drivers/nv_dispi.inf_amd64_36f8a434e9b7b9f2/libnvidia-ml.so.1 /usr/lib/wsl/drivers/nv_dispi.inf_amd64_84b2c943d6816eb7/libnvidia-ml.so.1 /usr/lib/wsl/drivers/nv_dispi.inf_amd64_abf7e4e84f20581c/libnvidia-ml.so.1 /usr/lib/wsl/drivers/nv_dispi.inf_amd64_d1bd230cd08e7436/libnvidia-ml.so.1 /usr/lib/wsl/drivers/nv_dispi.inf_amd64_f52c4b8723f8dd33/libnvidia-ml.so.1]"
time=2024-04-19T00:05:17.758+08:00 level=INFO source=gpu.go:249 msg="Unable to load CUDA management library /usr/lib/x86_64-linux-gnu/libnvidia-ml.so.535.171.04: nvml vram init failure: 9"
time=2024-04-19T00:05:17.762+08:00 level=INFO source=gpu.go:249 msg="Unable to load CUDA management library /usr/lib/wsl/lib/libnvidia-ml.so.1: nvml vram init failure: 9"
time=2024-04-19T00:05:17.831+08:00 level=INFO source=gpu.go:249 msg="Unable to load CUDA management library /usr/lib/wsl/drivers/nv_dispi.inf_amd64_059948e396d205d5/libnvidia-ml.so.1: nvml vram init failure: 3"
time=2024-04-19T00:05:17.881+08:00 level=INFO source=gpu.go:249 msg="Unable to load CUDA management library /usr/lib/wsl/drivers/nv_dispi.inf_amd64_268e85175aa9e991/libnvidia-ml.so.1: nvml vram init failure: 3"
time=2024-04-19T00:05:17.931+08:00 level=INFO source=gpu.go:249 msg="Unable to load CUDA management library /usr/lib/wsl/drivers/nv_dispi.inf_amd64_36f8a434e9b7b9f2/libnvidia-ml.so.1: nvml vram init failure: 3"
time=2024-04-19T00:05:17.971+08:00 level=INFO source=gpu.go:249 msg="Unable to load CUDA management library /usr/lib/wsl/drivers/nv_dispi.inf_amd64_84b2c943d6816eb7/libnvidia-ml.so.1: nvml vram init failure: 3"
time=2024-04-19T00:05:18.038+08:00 level=INFO source=gpu.go:249 msg="Unable to load CUDA management library /usr/lib/wsl/drivers/nv_dispi.inf_amd64_abf7e4e84f20581c/libnvidia-ml.so.1: nvml vram init failure: 3"
time=2024-04-19T00:05:18.082+08:00 level=INFO source=gpu.go:249 msg="Unable to load CUDA management library /usr/lib/wsl/drivers/nv_dispi.inf_amd64_d1bd230cd08e7436/libnvidia-ml.so.1: nvml vram init failure: 3"
time=2024-04-19T00:05:18.130+08:00 level=INFO source=gpu.go:249 msg="Unable to load CUDA management library /usr/lib/wsl/drivers/nv_dispi.inf_amd64_f52c4b8723f8dd33/libnvidia-ml.so.1: nvml vram init failure: 3"
time=2024-04-19T00:05:18.130+08:00 level=INFO source=cpu_common.go:11 msg="CPU has AVX2"
time=2024-04-19T00:05:18.131+08:00 level=INFO source=routes.go:1133 msg="no GPU detected"

导致的原因可能是机器休眠过了, wsl的虚拟机不知道如何重连gpu修改正方法是重启wsl,

复制代码
wsl --shutdown

修复之后的log如下:

复制代码
time=2024-04-19T00:07:52.288+08:00 level=INFO source=images.go:806 msg="total blobs: 37"
time=2024-04-19T00:07:52.297+08:00 level=INFO source=images.go:813 msg="total unused blobs removed: 0"
time=2024-04-19T00:07:52.297+08:00 level=INFO source=routes.go:1110 msg="Listening on 127.0.0.1:11434 (version 0.1.29)"
time=2024-04-19T00:07:52.299+08:00 level=INFO source=payload_common.go:112 msg="Extracting dynamic libraries to /tmp/ollama1882281951/runners ..."
time=2024-04-19T00:07:54.749+08:00 level=INFO source=payload_common.go:139 msg="Dynamic LLM libraries [cpu_avx2 rocm_v60000 cpu_avx cuda_v11 cpu]"
time=2024-04-19T00:07:54.749+08:00 level=INFO source=gpu.go:77 msg="Detecting GPU type"
time=2024-04-19T00:07:54.751+08:00 level=INFO source=gpu.go:191 msg="Searching for GPU management library libnvidia-ml.so"
time=2024-04-19T00:07:56.867+08:00 level=INFO source=gpu.go:237 msg="Discovered GPU libraries: [/usr/lib/x86_64-linux-gnu/libnvidia-ml.so.535.171.04 /usr/lib/wsl/lib/libnvidia-ml.so.1 /usr/lib/wsl/drivers/nv_dispi.inf_amd64_059948e396d205d5/libnvidia-ml.so.1 /usr/lib/wsl/drivers/nv_dispi.inf_amd64_268e85175aa9e991/libnvidia-ml.so.1 /usr/lib/wsl/drivers/nv_dispi.inf_amd64_36f8a434e9b7b9f2/libnvidia-ml.so.1 /usr/lib/wsl/drivers/nv_dispi.inf_amd64_84b2c943d6816eb7/libnvidia-ml.so.1 /usr/lib/wsl/drivers/nv_dispi.inf_amd64_abf7e4e84f20581c/libnvidia-ml.so.1 /usr/lib/wsl/drivers/nv_dispi.inf_amd64_d1bd230cd08e7436/libnvidia-ml.so.1 /usr/lib/wsl/drivers/nv_dispi.inf_amd64_f52c4b8723f8dd33/libnvidia-ml.so.1]"
time=2024-04-19T00:07:56.878+08:00 level=INFO source=gpu.go:249 msg="Unable to load CUDA management library /usr/lib/x86_64-linux-gnu/libnvidia-ml.so.535.171.04: nvml vram init failure: 9"
time=2024-04-19T00:07:56.927+08:00 level=INFO source=gpu.go:82 msg="Nvidia GPU detected"
time=2024-04-19T00:07:56.927+08:00 level=INFO source=cpu_common.go:11 msg="CPU has AVX2"
time=2024-04-19T00:07:56.941+08:00 level=INFO source=gpu.go:119 msg="CUDA Compute Capability detected: 8.6"
相关推荐
广州华水科技几秒前
GNSS与单北斗变形监测技术的应用现状分析与未来发展方向
前端
70asunflower10 分钟前
Emulation,Simulation,Virtualization,Imitation 的区别?
linux·docker
code_YuJun23 分钟前
corepack 作用
前端
千寻girling24 分钟前
Koa.js 教程 | 一份不可多得的 Node.js 的 Web 框架 Koa.js 教程
前端·后端·面试
全栈前端老曹25 分钟前
【MongoDB】Node.js 集成 —— Mongoose ORM、Schema 设计、Model 操作
前端·javascript·数据库·mongodb·node.js·nosql·全栈
code_YuJun26 分钟前
pnpm-workspace.yaml
前端
天才熊猫君29 分钟前
“破案”笔记:iframe动态加载内容后,打印功能为何失灵?
前端
神梦流39 分钟前
ops-math 算子库的扩展能力:高精度与复数运算的硬件映射策略
服务器·数据库
五月君_1 小时前
炸裂!Claude Opus 4.6 与 GPT-5.3 同日发布:前端人的“自动驾驶“时刻到了?
前端·gpt
Mr Xu_1 小时前
前端开发中CSS代码的优化与复用:从公共样式提取到CSS变量的最佳实践
前端·css