数据洞察创新挑战赛之智能运维赛参赛攻略--皮卡丘的皮卡

关联比赛: 数据洞察创新挑战赛之智能运维赛

背景和参赛动机

1.个人背景和专业领域

四川大学本科,中南大学研究生,专业是医学图像处理。目前就职于深信服,主要做云安全相关的业务开发工作。

2.何时开始关注和参与数据科学竞赛?

2022年就在关注和简单参与天池竞赛,一开始只是为了一些T恤之类的小礼品。年底拿了一次奖,就慢慢打专门花时间来参加天池的比赛了。

3.参加数据洞察创新挑战赛的初衷和动机是什么?

运维赛和目前工作比较相关,算是对成绩比较了解,也很感兴趣,想尝试一下。

项目选择和团队组建

4.在数据洞察创新挑战赛中选择的项目是什么?

两个赛道都参与了

5.是单独参赛还是组队参赛?如果组队,如何组建团队?

组队参赛,但是基本都是一个人在打,组建团队也是帮朋友拿一下奖励和团队线下旅游机会。

6.是如何确定参赛项目和团队成员的?

有固定的队友,一般都是加同事和表弟。

参赛过程和挑战

7.对参赛过程的描述,包括数据集的理解、特征工程、模型选择等步骤

基于赛题给出的微服务trace,metric等数据,找出导致高响应时间trace迟(超过slo阈值)出现的span列表。

  • trace: 一个(对外)接口的完整链路。(A,B,C,D,E组成一个trace)
  • span: 链路中每一次微服务接口调用的不同阶段,是一个span。(如由A发起调用到B,会产生一个client span。到达B上运行时,会产生一个server span)
  • slo阈值:微服务服务质量的属性,通常会带一个百分位和一个延迟,如95分位[200ms],就是微服务95%的请求响应时间需要小于200毫秒。题目给出的slous位于94分~95分位间。

span分为四类:

  • client: 客户端,记录一次调用从客户端发起到返回客户端
  • server: 服务端,记录一次调用从到达服务端到离开服务端(粉红色)一般来说,server的父span是一个client,同时可能包含多个子client类型span。正常情况下server的时间区间在它父span之内。
  • producer: 生产者,类似客户端,通常往消息队列写入消息。
  • consumer: 消费者,类似服务端,异步消费,时间可能和producer相隔很远。

独占时间:span是trace的主要组成部分,所以挖掘span的特征是重点。由于span的响应/延迟是受它子span影响的,排除子span影响的独占时间才能反映这个span的耗时。不通类型的span,独占时间含义也不同:

  • client:接口网络侧的延迟。一般来说client时间减去子span的时间,就是client的独占时间。
  • server:接口在服务端实际运行的时间。由于server可能存在多个子span,所以需要先把子span合并区间,再计算总时间,最终用server span的时间减去子span的总时间,得到独占时间。

独占时间算是一个最显著的特征,每个trace只选择真实时间最大的span,都能拿到一半以上(1900+)的分数。

其他特征:

由于存在错误的span和异步span,为span定义is_error和is_consumer属性

  • is_error:如果当前span的上位节点中存在error的span,则自身也属于error,is_error标记为1
  • is_consumer:如果当前span的上位节点中存在consumer类型的span,则自身也属于consumer,is_consumer标记为1

延迟相关特征

  • 90~95分位的独占延迟。
  • 90~95分位延迟均值,标准差

metric特征

  • pod当前cpu占用
  • pod当前内存占用
  • pod分配的cpu限制
  • pod分配的内存限制

为了能直接根据输入数据得出结果,需要设计两个算法:

  • span排序算法,排在前面的越有可能成为根因,选择根因时必然是依次往下选
  • span阈值算法,针对不通path接口,计算出合理的阈值,大于阈值的所有span为根因结果。

排序算法:

排序算法只需要简单对各个span的特征进行加权求和作为

  • span的评分,并按大小排列即可,用到的特征包括:
  • span独占时间
  • span独占时间90-95延迟
  • span运行时间90-95延迟
  • 90~95分位延迟均值,标准差
  • span运行时间中点对应的pod的cpu、内存消耗
  • is_error,is_consumer

由于没有想到好的训练方法,只是手动修改权重提交测试。最终结果其实只使用了(真实时间 - 94延迟)作为了排序评分。

阈值算法:

当一个span恢复正常运行(真实运行时间变成95分位的均值延迟),trace的整体响应时间也会减少。重复操作,当减少到SLOus一定倍率(1.5倍)时,就认为达到阈值,之前的span集合就是根因列表。

这里需要设计一个trace时间修正算法,当一个span恢复后,其后续的span的起始时间都可能被修改,顺序位:

  • 子孙修正:优先修改子孙的span起始时间,需要根据每个阶段等比减少的时间对应调整时间。
  • 兄弟修正:位于后面的兄弟节点,简单整体前移即可。
  • 长辈修正:最后修正长辈以及后续节点,简单整体前移即可。

并发运行

由于所有特征都是提前提取的,需要统计的数据都可以对每个PATH接口处理处理。

最终计算根因时,每个trace计算相互独立,无需上下文支持,可以直接并行计算。

总结

运维赛的赛题门槛较高,前期能出高分的队没几个。我对微服务相关的知识有过了解,理解了独占时间后,分数基本都是前几,结合span延迟信息,最终取得了不错的结果。

8.参赛过程中遇到的最大挑战是什么?是如何克服的?

方案的可解释下不强,有时候尝试出一些答案,但是很难解释为什么这些span是异常的。最终并没有克服问题,只是在尝试找规律。

9.选手有没有遇到比较棘手的问题?如何解决的?

过程中成绩一直无法提高,稳定在1850左右,后来发现是因为提前把consumer类型的span以及其后代都筛除了。筛除的原因是我认为这些数据无法影响主接口的调用。

后来在写代码注释的时候才发现这个问题,放开这部分span后才有了最终的成绩。

成果和展望

10.在数据洞察创新挑战赛中取得了怎样的成绩?

答:取得了不错的成绩,运维赛的一等奖,主要还是占了初赛的便宜,都没想到初赛会有30%的分数。

11.对自己的表现和成果是否满意?

答:对表现和结果都很满意。

12.对未来参加数据科学竞赛有什么打算和展望?

答:希望下次比赛可以给出更详细的背景介绍与赛题分析,方便其他队伍参与进来。

总结

13.参加数据洞察创新挑战赛的故事和经验分享

从6月到10月底,这个比赛跨度很长。运维赛复赛长时间没有进展,都有点放弃了,在最后一天查看代码时候发现了一些小问题,把成绩提高上来了,也算是对我认真写注释的回报。最后占了初赛30%的便宜拿了第一,运气和结果都很好。

14.对其他有意参加下一届数据洞察创新挑战赛的人的建议和鼓励

答:搏一搏,说不定就拿奖了。

查看更多内容,欢迎访问天池技术圈官方地址:数据洞察创新挑战赛之智能运维赛参赛攻略--皮卡丘的皮卡_天池技术圈-阿里云天池

相关推荐
七夜zippoe3 小时前
CANN Runtime任务描述序列化与持久化源码深度解码
大数据·运维·服务器·cann
Fcy6484 小时前
Linux下 进程(一)(冯诺依曼体系、操作系统、进程基本概念与基本操作)
linux·运维·服务器·进程
袁袁袁袁满4 小时前
Linux怎么查看最新下载的文件
linux·运维·服务器
代码游侠5 小时前
学习笔记——设备树基础
linux·运维·开发语言·单片机·算法
Harvey9035 小时前
通过 Helm 部署 Nginx 应用的完整标准化步骤
linux·运维·nginx·k8s
珠海西格电力科技6 小时前
微电网能量平衡理论的实现条件在不同场景下有哪些差异?
运维·服务器·网络·人工智能·云计算·智慧城市
释怀不想释怀6 小时前
Linux环境变量
linux·运维·服务器
zzzsde6 小时前
【Linux】进程(4):进程优先级&&调度队列
linux·运维·服务器
聆风吟º8 小时前
CANN开源项目实战指南:使用oam-tools构建自动化故障诊断与运维可观测性体系
运维·开源·自动化·cann
NPE~8 小时前
自动化工具Drissonpage 保姆级教程(含xpath语法)
运维·后端·爬虫·自动化·网络爬虫·xpath·浏览器自动化