LeetCode //C - 29. Divide Two Integers

29. Divide Two Integers

Given two integers dividend and divisor, divide two integers without using multiplication, division, and mod operator.

The integer division should truncate toward zero, which means losing its fractional part. For example, 8.345 would be truncated to 8, and -2.7335 would be truncated to -2.

Return the quotient after dividing dividend by divisor.

Note: Assume we are dealing with an environment that could only store integers within the 32-bit signed integer range: [ − 2 31 , 2 31 − 1 −2^{31}, 2^{31} − 1 −231,231−1]. For this problem, if the quotient is strictly greater than 2 31 − 1 2^{31} - 1 231−1, then return 2 31 − 1 2^{31} - 1 231−1, and if the quotient is strictly less than − 2 31 -2^{31} −231, then return − 2 31 -2^{31} −231.

Example 1:

Input: dividend = 10, divisor = 3
Output: 3
Explanation: 10/3 = 3.33333... which is truncated to 3.

Example 2:

Input: dividend = 7, divisor = -3
Output: -2
Explanation: 7/-3 = -2.33333... which is truncated to -2.

Constraints:
  • − 2 31 < = d i v i d e n d , d i v i s o r < = 2 31 − 1 -2^{31} <= dividend, divisor <= 2^{31} - 1 −231<=dividend,divisor<=231−1
  • divisor != 0

From: LeetCode

Link: 29. Divide Two Integers


Solution:

Ideas:
  1. Handle Signs: Compute the sign of the result based on the signs of dividend and divisor.
  2. Use Absolute Values: Since we're working with possible negative numbers, we convert everything into positive values for ease of calculation.
  3. Exponential Search: Use a method to subtract bigger chunks of the divisor from the dividend by shifting the divisor left (equivalent to multiplying the divisor by powers of 2) until we overshoot the dividend.
  4. Subtraction and Accumulation: Once the optimal subtraction chunk is identified, subtract it from the dividend and accumulate the count of how many times this chunk fits into the dividend.
  5. Overflow Handling: Make sure the result does not exceed the bounds defined by 32-bit integers.
Code:
c 复制代码
int divide(int dividend, int divisor) {
    // Edge cases for overflow
    if (dividend == INT_MIN && divisor == -1) {
        return INT_MAX;
    }

    // Determine the sign of the result
    int sign = (dividend > 0) ^ (divisor > 0) ? -1 : 1;

    // Work with absolute values to avoid overflow issues
    long long ldividend = llabs((long long)dividend);
    long long ldivisor = llabs((long long)divisor);

    long long result = 0;

    // Perform the division using bit manipulation and subtraction
    while (ldividend >= ldivisor) {
        long long temp = ldivisor, multiple = 1;
        while (ldividend >= (temp << 1)) {
            temp <<= 1;
            multiple <<= 1;
        }
        ldividend -= temp;
        result += multiple;
    }

    // Apply the sign to the result
    result = sign * result;

    // Handle potential overflow
    if (result > INT_MAX) return INT_MAX;
    if (result < INT_MIN) return INT_MIN;

    return (int)result;
}
相关推荐
dying_man12 分钟前
LeetCode--42.接雨水
算法·leetcode
vortex542 分钟前
算法设计与分析 知识总结
算法
艾莉丝努力练剑1 小时前
【C语言】学习过程教训与经验杂谈:思想准备、知识回顾(三)
c语言·开发语言·数据结构·学习·算法
ZZZS05161 小时前
stack栈练习
c++·笔记·学习·算法·动态规划
黑听人1 小时前
【力扣 困难 C】115. 不同的子序列
c语言·leetcode
hans汉斯2 小时前
【人工智能与机器人研究】基于力传感器坐标系预标定的重力补偿算法
人工智能·算法·机器人·信号处理·深度神经网络
vortex53 小时前
算法设计与分析:分治、动态规划与贪心算法的异同与选择
算法·贪心算法·动态规划
前端拿破轮3 小时前
🤡🤡🤡面试官:就你这还每天刷leetcode?连四数相加和四数之和都分不清!
算法·leetcode·面试
地平线开发者4 小时前
征程 6|工具链量化简介与代码实操
算法·自动驾驶
DoraBigHead4 小时前
🧠 小哆啦解题记——谁偷改了狗狗的台词?
算法