LeetCode //C - 29. Divide Two Integers

29. Divide Two Integers

Given two integers dividend and divisor, divide two integers without using multiplication, division, and mod operator.

The integer division should truncate toward zero, which means losing its fractional part. For example, 8.345 would be truncated to 8, and -2.7335 would be truncated to -2.

Return the quotient after dividing dividend by divisor.

Note: Assume we are dealing with an environment that could only store integers within the 32-bit signed integer range: [ − 2 31 , 2 31 − 1 −2^{31}, 2^{31} − 1 −231,231−1]. For this problem, if the quotient is strictly greater than 2 31 − 1 2^{31} - 1 231−1, then return 2 31 − 1 2^{31} - 1 231−1, and if the quotient is strictly less than − 2 31 -2^{31} −231, then return − 2 31 -2^{31} −231.

Example 1:

Input: dividend = 10, divisor = 3
Output: 3
Explanation: 10/3 = 3.33333... which is truncated to 3.

Example 2:

Input: dividend = 7, divisor = -3
Output: -2
Explanation: 7/-3 = -2.33333... which is truncated to -2.

Constraints:
  • − 2 31 < = d i v i d e n d , d i v i s o r < = 2 31 − 1 -2^{31} <= dividend, divisor <= 2^{31} - 1 −231<=dividend,divisor<=231−1
  • divisor != 0

From: LeetCode

Link: 29. Divide Two Integers


Solution:

Ideas:
  1. Handle Signs: Compute the sign of the result based on the signs of dividend and divisor.
  2. Use Absolute Values: Since we're working with possible negative numbers, we convert everything into positive values for ease of calculation.
  3. Exponential Search: Use a method to subtract bigger chunks of the divisor from the dividend by shifting the divisor left (equivalent to multiplying the divisor by powers of 2) until we overshoot the dividend.
  4. Subtraction and Accumulation: Once the optimal subtraction chunk is identified, subtract it from the dividend and accumulate the count of how many times this chunk fits into the dividend.
  5. Overflow Handling: Make sure the result does not exceed the bounds defined by 32-bit integers.
Code:
c 复制代码
int divide(int dividend, int divisor) {
    // Edge cases for overflow
    if (dividend == INT_MIN && divisor == -1) {
        return INT_MAX;
    }

    // Determine the sign of the result
    int sign = (dividend > 0) ^ (divisor > 0) ? -1 : 1;

    // Work with absolute values to avoid overflow issues
    long long ldividend = llabs((long long)dividend);
    long long ldivisor = llabs((long long)divisor);

    long long result = 0;

    // Perform the division using bit manipulation and subtraction
    while (ldividend >= ldivisor) {
        long long temp = ldivisor, multiple = 1;
        while (ldividend >= (temp << 1)) {
            temp <<= 1;
            multiple <<= 1;
        }
        ldividend -= temp;
        result += multiple;
    }

    // Apply the sign to the result
    result = sign * result;

    // Handle potential overflow
    if (result > INT_MAX) return INT_MAX;
    if (result < INT_MIN) return INT_MIN;

    return (int)result;
}
相关推荐
qiuiuiu4131 分钟前
正点原子RK3568学习日志-编译第一个驱动程序helloworld
linux·c语言·开发语言·单片机
爱吃橘的橘猫2 分钟前
嵌入式系统与嵌入式 C 语言(2)
c语言·算法·嵌入式
235165 分钟前
【LeetCode】146. LRU 缓存
java·后端·算法·leetcode·链表·缓存·职场和发展
weixin_307779131 小时前
使用Python高效读取ZIP压缩文件中的UTF-8 JSON数据到Pandas和PySpark DataFrame
开发语言·python·算法·自动化·json
柳安忆1 小时前
【论文阅读】Sparks of Science
算法
web安全工具库2 小时前
从课堂笔记到实践:深入理解Linux C函数库的奥秘
java·数据库·算法
爱编程的鱼3 小时前
C# 变量详解:从基础概念到高级应用
java·算法·c#
tkevinjd3 小时前
反转链表及其应用(力扣2130)
数据结构·leetcode·链表
HalvmånEver4 小时前
红黑树实现与原理剖析(上篇):核心规则与插入平衡逻辑
数据结构·c++·学习·算法·红黑树
哆啦刘小洋4 小时前
T:堆的基本介绍
算法