LeetCode //C - 29. Divide Two Integers

29. Divide Two Integers

Given two integers dividend and divisor, divide two integers without using multiplication, division, and mod operator.

The integer division should truncate toward zero, which means losing its fractional part. For example, 8.345 would be truncated to 8, and -2.7335 would be truncated to -2.

Return the quotient after dividing dividend by divisor.

Note: Assume we are dealing with an environment that could only store integers within the 32-bit signed integer range: [ − 2 31 , 2 31 − 1 −2^{31}, 2^{31} − 1 −231,231−1]. For this problem, if the quotient is strictly greater than 2 31 − 1 2^{31} - 1 231−1, then return 2 31 − 1 2^{31} - 1 231−1, and if the quotient is strictly less than − 2 31 -2^{31} −231, then return − 2 31 -2^{31} −231.

Example 1:

Input: dividend = 10, divisor = 3
Output: 3
Explanation: 10/3 = 3.33333... which is truncated to 3.

Example 2:

Input: dividend = 7, divisor = -3
Output: -2
Explanation: 7/-3 = -2.33333... which is truncated to -2.

Constraints:
  • − 2 31 < = d i v i d e n d , d i v i s o r < = 2 31 − 1 -2^{31} <= dividend, divisor <= 2^{31} - 1 −231<=dividend,divisor<=231−1
  • divisor != 0

From: LeetCode

Link: 29. Divide Two Integers


Solution:

Ideas:
  1. Handle Signs: Compute the sign of the result based on the signs of dividend and divisor.
  2. Use Absolute Values: Since we're working with possible negative numbers, we convert everything into positive values for ease of calculation.
  3. Exponential Search: Use a method to subtract bigger chunks of the divisor from the dividend by shifting the divisor left (equivalent to multiplying the divisor by powers of 2) until we overshoot the dividend.
  4. Subtraction and Accumulation: Once the optimal subtraction chunk is identified, subtract it from the dividend and accumulate the count of how many times this chunk fits into the dividend.
  5. Overflow Handling: Make sure the result does not exceed the bounds defined by 32-bit integers.
Code:
c 复制代码
int divide(int dividend, int divisor) {
    // Edge cases for overflow
    if (dividend == INT_MIN && divisor == -1) {
        return INT_MAX;
    }

    // Determine the sign of the result
    int sign = (dividend > 0) ^ (divisor > 0) ? -1 : 1;

    // Work with absolute values to avoid overflow issues
    long long ldividend = llabs((long long)dividend);
    long long ldivisor = llabs((long long)divisor);

    long long result = 0;

    // Perform the division using bit manipulation and subtraction
    while (ldividend >= ldivisor) {
        long long temp = ldivisor, multiple = 1;
        while (ldividend >= (temp << 1)) {
            temp <<= 1;
            multiple <<= 1;
        }
        ldividend -= temp;
        result += multiple;
    }

    // Apply the sign to the result
    result = sign * result;

    // Handle potential overflow
    if (result > INT_MAX) return INT_MAX;
    if (result < INT_MIN) return INT_MIN;

    return (int)result;
}
相关推荐
wen__xvn34 分钟前
每日一题洛谷P1914 小书童——凯撒密码c++
数据结构·c++·算法
BUG 劝退师1 小时前
八大经典排序算法
数据结构·算法·排序算法
m0_748240912 小时前
SpringMVC 请求参数接收
前端·javascript·算法
小林熬夜学编程2 小时前
【MySQL】第八弹---全面解析数据库表的增删改查操作:从创建到检索、排序与分页
linux·开发语言·数据库·mysql·算法
小小小白的编程日记2 小时前
List的基本功能(1)
数据结构·c++·算法·stl·list
_Itachi__2 小时前
LeetCode 热题 100 283. 移动零
数据结构·算法·leetcode
柃歌2 小时前
【UCB CS 61B SP24】Lecture 5 - Lists 3: DLLists and Arrays学习笔记
java·数据结构·笔记·学习·算法
鱼不如渔2 小时前
leetcode刷题第十三天——二叉树Ⅲ
linux·算法·leetcode
qwy7152292581633 小时前
10-R数组
python·算法·r语言
月上柳梢头&3 小时前
[C++ ]使用std::string作为函数参数时的注意事项
开发语言·c++·算法