LeetCode //C - 29. Divide Two Integers

29. Divide Two Integers

Given two integers dividend and divisor, divide two integers without using multiplication, division, and mod operator.

The integer division should truncate toward zero, which means losing its fractional part. For example, 8.345 would be truncated to 8, and -2.7335 would be truncated to -2.

Return the quotient after dividing dividend by divisor.

Note: Assume we are dealing with an environment that could only store integers within the 32-bit signed integer range: [ − 2 31 , 2 31 − 1 −2^{31}, 2^{31} − 1 −231,231−1]. For this problem, if the quotient is strictly greater than 2 31 − 1 2^{31} - 1 231−1, then return 2 31 − 1 2^{31} - 1 231−1, and if the quotient is strictly less than − 2 31 -2^{31} −231, then return − 2 31 -2^{31} −231.

Example 1:

Input: dividend = 10, divisor = 3
Output: 3
Explanation: 10/3 = 3.33333... which is truncated to 3.

Example 2:

Input: dividend = 7, divisor = -3
Output: -2
Explanation: 7/-3 = -2.33333... which is truncated to -2.

Constraints:
  • − 2 31 < = d i v i d e n d , d i v i s o r < = 2 31 − 1 -2^{31} <= dividend, divisor <= 2^{31} - 1 −231<=dividend,divisor<=231−1
  • divisor != 0

From: LeetCode

Link: 29. Divide Two Integers


Solution:

Ideas:
  1. Handle Signs: Compute the sign of the result based on the signs of dividend and divisor.
  2. Use Absolute Values: Since we're working with possible negative numbers, we convert everything into positive values for ease of calculation.
  3. Exponential Search: Use a method to subtract bigger chunks of the divisor from the dividend by shifting the divisor left (equivalent to multiplying the divisor by powers of 2) until we overshoot the dividend.
  4. Subtraction and Accumulation: Once the optimal subtraction chunk is identified, subtract it from the dividend and accumulate the count of how many times this chunk fits into the dividend.
  5. Overflow Handling: Make sure the result does not exceed the bounds defined by 32-bit integers.
Code:
c 复制代码
int divide(int dividend, int divisor) {
    // Edge cases for overflow
    if (dividend == INT_MIN && divisor == -1) {
        return INT_MAX;
    }

    // Determine the sign of the result
    int sign = (dividend > 0) ^ (divisor > 0) ? -1 : 1;

    // Work with absolute values to avoid overflow issues
    long long ldividend = llabs((long long)dividend);
    long long ldivisor = llabs((long long)divisor);

    long long result = 0;

    // Perform the division using bit manipulation and subtraction
    while (ldividend >= ldivisor) {
        long long temp = ldivisor, multiple = 1;
        while (ldividend >= (temp << 1)) {
            temp <<= 1;
            multiple <<= 1;
        }
        ldividend -= temp;
        result += multiple;
    }

    // Apply the sign to the result
    result = sign * result;

    // Handle potential overflow
    if (result > INT_MAX) return INT_MAX;
    if (result < INT_MIN) return INT_MIN;

    return (int)result;
}
相关推荐
想跑步的小弱鸡1 小时前
Leetcode hot 100(day 3)
算法·leetcode·职场和发展
xyliiiiiL2 小时前
ZGC初步了解
java·jvm·算法
爱的叹息3 小时前
RedisTemplate 的 6 个可配置序列化器属性对比
算法·哈希算法
独好紫罗兰4 小时前
洛谷题单2-P5713 【深基3.例5】洛谷团队系统-python-流程图重构
开发语言·python·算法
每次的天空4 小时前
Android学习总结之算法篇四(字符串)
android·学习·算法
请来次降维打击!!!5 小时前
优选算法系列(5.位运算)
java·前端·c++·算法
qystca5 小时前
蓝桥云客 刷题统计
算法·模拟
别NULL5 小时前
机试题——统计最少媒体包发送源个数
c++·算法·媒体
weisian1515 小时前
Java常用工具算法-3--加密算法2--非对称加密算法(RSA常用,ECC,DSA)
java·开发语言·算法
程序员黄同学7 小时前
贪心算法,其优缺点是什么?
算法·贪心算法