LeetCode //C - 29. Divide Two Integers

29. Divide Two Integers

Given two integers dividend and divisor, divide two integers without using multiplication, division, and mod operator.

The integer division should truncate toward zero, which means losing its fractional part. For example, 8.345 would be truncated to 8, and -2.7335 would be truncated to -2.

Return the quotient after dividing dividend by divisor.

Note: Assume we are dealing with an environment that could only store integers within the 32-bit signed integer range: [ − 2 31 , 2 31 − 1 −2^{31}, 2^{31} − 1 −231,231−1]. For this problem, if the quotient is strictly greater than 2 31 − 1 2^{31} - 1 231−1, then return 2 31 − 1 2^{31} - 1 231−1, and if the quotient is strictly less than − 2 31 -2^{31} −231, then return − 2 31 -2^{31} −231.

Example 1:

Input: dividend = 10, divisor = 3
Output: 3
Explanation: 10/3 = 3.33333... which is truncated to 3.

Example 2:

Input: dividend = 7, divisor = -3
Output: -2
Explanation: 7/-3 = -2.33333... which is truncated to -2.

Constraints:
  • − 2 31 < = d i v i d e n d , d i v i s o r < = 2 31 − 1 -2^{31} <= dividend, divisor <= 2^{31} - 1 −231<=dividend,divisor<=231−1
  • divisor != 0

From: LeetCode

Link: 29. Divide Two Integers


Solution:

Ideas:
  1. Handle Signs: Compute the sign of the result based on the signs of dividend and divisor.
  2. Use Absolute Values: Since we're working with possible negative numbers, we convert everything into positive values for ease of calculation.
  3. Exponential Search: Use a method to subtract bigger chunks of the divisor from the dividend by shifting the divisor left (equivalent to multiplying the divisor by powers of 2) until we overshoot the dividend.
  4. Subtraction and Accumulation: Once the optimal subtraction chunk is identified, subtract it from the dividend and accumulate the count of how many times this chunk fits into the dividend.
  5. Overflow Handling: Make sure the result does not exceed the bounds defined by 32-bit integers.
Code:
c 复制代码
int divide(int dividend, int divisor) {
    // Edge cases for overflow
    if (dividend == INT_MIN && divisor == -1) {
        return INT_MAX;
    }

    // Determine the sign of the result
    int sign = (dividend > 0) ^ (divisor > 0) ? -1 : 1;

    // Work with absolute values to avoid overflow issues
    long long ldividend = llabs((long long)dividend);
    long long ldivisor = llabs((long long)divisor);

    long long result = 0;

    // Perform the division using bit manipulation and subtraction
    while (ldividend >= ldivisor) {
        long long temp = ldivisor, multiple = 1;
        while (ldividend >= (temp << 1)) {
            temp <<= 1;
            multiple <<= 1;
        }
        ldividend -= temp;
        result += multiple;
    }

    // Apply the sign to the result
    result = sign * result;

    // Handle potential overflow
    if (result > INT_MAX) return INT_MAX;
    if (result < INT_MIN) return INT_MIN;

    return (int)result;
}
相关推荐
sali-tec1 天前
C# 基于halcon的视觉工作流-章66 四目匹配
开发语言·人工智能·数码相机·算法·计算机视觉·c#
小明说Java1 天前
常见排序算法的实现
数据结构·算法·排序算法
行云流水20191 天前
编程竞赛算法选择:理解时间复杂度提升解题效率
算法
smj2302_796826521 天前
解决leetcode第3768题.固定长度子数组中的最小逆序对数目
python·算法·leetcode
cynicme1 天前
力扣3531——统计被覆盖的建筑
算法·leetcode
core5121 天前
深度解析DeepSeek-R1中GRPO强化学习算法
人工智能·算法·机器学习·deepseek·grpo
mit6.8241 天前
计数if|
算法
a伊雪1 天前
c++ 引用参数
c++·算法
程序员Jared1 天前
深入浅出C语言——程序环境和预处理
c语言