ComfyUI学习旅程

一、模型文件(Checkpoint)

首先它很大,这些文件是你从huggingface或者civitai下载而来的,

所以这些大文件如 .ckpt 或 .safetensors ,实际上包含了什么内容呢?

它包含了包含了三种不同模型的权重:CLIP、主模型和VAE。

在默认的ComfyUI工作流中,由这里的CheckpointLoader加载模型到ComfyUI中。

你能看到它会有3种输出。

二、CLIP文本编码器(CLIP Text Encode)

让我们先看CLIP文本编码器这一条分流,注意CLIP又有两条分流,分别流向正面条件和负面条件。

CLIP文本编码器的作用就是把人类语言转换成模型能够理解的数据格式。

三、K 采样器 (KSampler)

CLIP文本编码器会流动到K采样器,图片就是通过这个采样器生成的。

在K采样器中,主要输入是Stable Diffusion的模型。

同时,正向提示词和反向提示词也是作为K采样器的输入。

四、空的潜在图像

最后,需要再来一个空潜在图像作为输入。(Empty Latent Image)

这是因为我们当前的场景是文生图。

五、降噪

于是采样器会利用这个潜在空图像,向这个潜在空图像添加噪声,然后使用Stable Diffusion的模型进行降噪。

具体的降噪过程是:编码后的正面和负面提示被传递给模型,在每个采样步骤中被用来指导去噪。

这种逐渐去噪的图像生成方式,正是Stable Diffusion生成图片的方式。

最终,采样器会输出一张降噪之后的图片。

六、VAE模型解码(VAE Decode)

最后的最后,Stable Diffusion会用到VAE模型。

VAE模型被用于把处于潜在空间的图像,转换成肉眼可见的像素图像。

潜在空间的数据是Stable Diffusion模型能够理解的数据。

而像素空间的图像是图片浏览器和人类能够用肉眼观察到的图像。

这个步骤,你可以看到来自采样器的Latent潜在空间的图像作为VAE编码器的输入,通过VAE解码之后,输出常规图像。

这就是简易的工作流的基本流程

相关推荐
老鱼说AI1 天前
当自回归模型遇上扩散模型:下一代序列预测模型详解与Pytorch实现
人工智能·pytorch·深度学习·神经网络·语言模型·自然语言处理·stable diffusion
我希望的一路生花7 天前
Nik Collection 6.2全新版Nik降噪锐化调色PS/LR插件
人工智能·计算机视觉·设计模式·stable diffusion·aigc
GetcharZp7 天前
玩转AI绘画,你只差一个节点式“魔法”工具——ComfyUI 保姆级入门指南
人工智能·stable diffusion
Seeklike9 天前
diffuxers学习--AutoPipeline
人工智能·python·stable diffusion·diffusers
游戏AI研究所9 天前
ComfyUI 里的 Prompt 插值器(prompt interpolation / text encoder 插值方式)的含义和作用!
人工智能·游戏·机器学习·stable diffusion·prompt·aigc
迈火12 天前
ComfyUI-3D-Pack:3D创作的AI神器
人工智能·gpt·3d·ai·stable diffusion·aigc·midjourney
Seeklike13 天前
diffusers学习--stable diffusion的管线解析
人工智能·stable diffusion·diffusers
马甲是掉不了一点的<.<13 天前
Stable Diffusion 环境配置详细指南
stable diffusion·环境配置
软件测试-阿涛13 天前
【AI绘画】Stable Diffusion webUI 常用功能使用技巧
人工智能·深度学习·计算机视觉·ai作画·stable diffusion
m0_6038887114 天前
Stable Diffusion Models are Secretly Good at Visual In-Context Learning
人工智能·ai·stable diffusion·论文速览