ComfyUI学习旅程

一、模型文件(Checkpoint)

首先它很大,这些文件是你从huggingface或者civitai下载而来的,

所以这些大文件如 .ckpt 或 .safetensors ,实际上包含了什么内容呢?

它包含了包含了三种不同模型的权重:CLIP、主模型和VAE。

在默认的ComfyUI工作流中,由这里的CheckpointLoader加载模型到ComfyUI中。

你能看到它会有3种输出。

二、CLIP文本编码器(CLIP Text Encode)

让我们先看CLIP文本编码器这一条分流,注意CLIP又有两条分流,分别流向正面条件和负面条件。

CLIP文本编码器的作用就是把人类语言转换成模型能够理解的数据格式。

三、K 采样器 (KSampler)

CLIP文本编码器会流动到K采样器,图片就是通过这个采样器生成的。

在K采样器中,主要输入是Stable Diffusion的模型。

同时,正向提示词和反向提示词也是作为K采样器的输入。

四、空的潜在图像

最后,需要再来一个空潜在图像作为输入。(Empty Latent Image)

这是因为我们当前的场景是文生图。

五、降噪

于是采样器会利用这个潜在空图像,向这个潜在空图像添加噪声,然后使用Stable Diffusion的模型进行降噪。

具体的降噪过程是:编码后的正面和负面提示被传递给模型,在每个采样步骤中被用来指导去噪。

这种逐渐去噪的图像生成方式,正是Stable Diffusion生成图片的方式。

最终,采样器会输出一张降噪之后的图片。

六、VAE模型解码(VAE Decode)

最后的最后,Stable Diffusion会用到VAE模型。

VAE模型被用于把处于潜在空间的图像,转换成肉眼可见的像素图像。

潜在空间的数据是Stable Diffusion模型能够理解的数据。

而像素空间的图像是图片浏览器和人类能够用肉眼观察到的图像。

这个步骤,你可以看到来自采样器的Latent潜在空间的图像作为VAE编码器的输入,通过VAE解码之后,输出常规图像。

这就是简易的工作流的基本流程

相关推荐
8Qi812 天前
Stable Diffusion详解
人工智能·深度学习·stable diffusion·图像生成
起个名字总是说已存在14 天前
stable-diffusion安装EasyPhoto启动报错解决
stable diffusion·ai绘画
微学AI15 天前
内网穿透的应用-摆脱局域网!Stable Diffusion3.5 结合cpolar使用更方便
docker·stable diffusion·内网穿透
陈苏同学15 天前
Diffusion 到 Flow Matching ( 从 DDPM 到 Stable Diffusion ) 丝滑入门
stable diffusion
CaracalTiger15 天前
本地部署 Stable Diffusion3.5!cpolar让远程访问很简单!
java·linux·运维·开发语言·python·微信·stable diffusion
ai_xiaogui15 天前
AIStarter跨平台完工:Win/Mac/Linux一键部署Stable Diffusion
linux·macos·stable diffusion·aistarter·kritaai·跨平台部署
Coovally AI模型快速验证22 天前
未来已来:从 CVPR & ICCV 观察 2025→2026 年计算机视觉的七大走向
人工智能·深度学习·目标检测·计算机视觉·stable diffusion
Brianna Home23 天前
大模型如何变身金融风控专家
人工智能·深度学习·机器学习·自然语言处理·stable diffusion·1024程序员节
leafff12324 天前
新手入坑 Stable Diffusion:模型、LoRA、硬件一篇讲透
人工智能·计算机视觉·stable diffusion
喆星时瑜1 个月前
ComfyUI本地部署Stable Diffusion:核心组件(Python、PyTorch、CUDA)版本与显卡配置全指南
pytorch·python·stable diffusion