DDPM代码讲解【详细!!!】

文章目录

    • 1、UNet网络结构
      • [1.1 residual网络和attention网络的细节](#1.1 residual网络和attention网络的细节)
      • [1.2 t 的作用](#1.2 t 的作用)
      • [1.3 DDPM 中的 Positional Embedding 的使用](#1.3 DDPM 中的 Positional Embedding 的使用)

1、UNet网络结构

UNet网络的总体框架如下,右边是UNet网络的整体框架,左边是residual网络和attention网络,

下面是UNet网络的详解结构图,左边进行有规律地残差、下采样、attention,右边也是有规律地残差、上采样、attention,相关的代码在图中给出,

1.1 residual网络和attention网络的细节

熟悉CNN的同学应该能看懂下图中的大部分过程。其中的 t 是时间从0到1000的随机值,假如是888,经过Positional Embedding输出长度是128的向量,下面再经过全连接层和silu层等,下面会详细讲解Positional Embedding和residual网络和attention网络,

1.2 t 的作用

1、和原图像一起,计算出 t时刻的图像 x t = 1 − α t ‾ ϵ + α t ‾ x 0 x_t=\sqrt{1-\overline{\alpha_t}}\epsilon+\sqrt{\overline{\alpha_t}}x_0 xt=1−αt ϵ+αt x0

2、将t进行编码,编码后,加到模型中,使模型学习到当前在哪个时刻

1.3 DDPM 中的 Positional Embedding 的使用

左图是Transformer的Positional Embedding,行索引代表第几个单词,列索引代表每个单词的特征向量,右图是DDPM的Positional Embedding,DDPM的Positional Embedding和Transformer的Positional Embedding的区别是DDPM的Positional Embedding并不是给每个词位置编码的,只需要在1000行中随机取出一行就可以了;另一个区别是DDPM的Positional Embedding并没有按照奇数位和偶数位进行拼接,而是按照前后的sin和cos进行拼接的,虽然拼接方式不同,但是最终的效果是一样的,

相关推荐
空白到白19 小时前
Transformer-解码器_编码器部分
人工智能·深度学习·transformer
【建模先锋】19 小时前
多源信息融合+经典卷积网络故障诊断模型合集
深度学习·信号处理·故障诊断·多源信息融合
钊气蓬勃.19 小时前
深度学习笔记:入门
人工智能·笔记·深度学习
B站计算机毕业设计之家19 小时前
深度学习实战:python动物识别分类检测系统 计算机视觉 Django框架 CNN算法 深度学习 卷积神经网络 TensorFlow 毕业设计(建议收藏)✅
python·深度学习·算法·计算机视觉·分类·毕业设计·动物识别
Francek Chen19 小时前
【深度学习计算机视觉】12:风格迁移
人工智能·pytorch·深度学习·计算机视觉·风格迁移
jie*20 小时前
小杰深度学习(seventeen)——视觉-经典神经网络——MObileNetV3
人工智能·python·深度学习·神经网络·numpy·matplotlib
文真同学20 小时前
《动手学深度学习》5.3~5.5
人工智能·深度学习
lisw0520 小时前
如何改善基于深度学习的场重构
深度学习·重构·软件工程
leafff1231 天前
Stable Diffusion在进行AI 创作时对算力的要求
人工智能·stable diffusion
leafff1231 天前
Stable Diffusion进行AIGC创作时的算力优化方案
人工智能·stable diffusion·aigc