DDPM代码讲解【详细!!!】

文章目录

    • 1、UNet网络结构
      • [1.1 residual网络和attention网络的细节](#1.1 residual网络和attention网络的细节)
      • [1.2 t 的作用](#1.2 t 的作用)
      • [1.3 DDPM 中的 Positional Embedding 的使用](#1.3 DDPM 中的 Positional Embedding 的使用)

1、UNet网络结构

UNet网络的总体框架如下,右边是UNet网络的整体框架,左边是residual网络和attention网络,

下面是UNet网络的详解结构图,左边进行有规律地残差、下采样、attention,右边也是有规律地残差、上采样、attention,相关的代码在图中给出,

1.1 residual网络和attention网络的细节

熟悉CNN的同学应该能看懂下图中的大部分过程。其中的 t 是时间从0到1000的随机值,假如是888,经过Positional Embedding输出长度是128的向量,下面再经过全连接层和silu层等,下面会详细讲解Positional Embedding和residual网络和attention网络,

1.2 t 的作用

1、和原图像一起,计算出 t时刻的图像 x t = 1 − α t ‾ ϵ + α t ‾ x 0 x_t=\sqrt{1-\overline{\alpha_t}}\epsilon+\sqrt{\overline{\alpha_t}}x_0 xt=1−αt ϵ+αt x0

2、将t进行编码,编码后,加到模型中,使模型学习到当前在哪个时刻

1.3 DDPM 中的 Positional Embedding 的使用

左图是Transformer的Positional Embedding,行索引代表第几个单词,列索引代表每个单词的特征向量,右图是DDPM的Positional Embedding,DDPM的Positional Embedding和Transformer的Positional Embedding的区别是DDPM的Positional Embedding并不是给每个词位置编码的,只需要在1000行中随机取出一行就可以了;另一个区别是DDPM的Positional Embedding并没有按照奇数位和偶数位进行拼接,而是按照前后的sin和cos进行拼接的,虽然拼接方式不同,但是最终的效果是一样的,

相关推荐
Coding茶水间12 小时前
基于深度学习的路面坑洞检测系统演示与介绍(YOLOv12/v11/v8/v5模型+Pyqt5界面+训练代码+数据集)
图像处理·人工智能·深度学习·yolo·目标检测·计算机视觉
哥布林学者12 小时前
吴恩达深度学习课程三: 结构化机器学习项目 第二周:误差分析与学习方法(一)误差分析与快速迭代
深度学习·ai
CoovallyAIHub13 小时前
如何在手机上轻松识别多种鸟类?我们发现了更简单的秘密……
深度学习·算法·计算机视觉
CoovallyAIHub13 小时前
抛弃LLM!MIT用纯视觉方法破解ARC难题,性能接近人类水平
深度学习·算法·计算机视觉
高洁0113 小时前
具身智能-视觉语言导航(VLN)
深度学习·算法·aigc·transformer·知识图谱
DatGuy14 小时前
Week 26: 深度学习补遗:LSTM 原理与代码复现
人工智能·深度学习·lstm
youngfengying17 小时前
Swin Transformer
人工智能·深度学习·transformer
CNRio19 小时前
人工智能基础架构与算力之3 Transformer 架构深度解析:从注意力机制到算力适配演进
人工智能·深度学习·transformer
qy-ll19 小时前
深度学习——CNN入门
人工智能·深度学习·cnn
青瓷程序设计1 天前
动物识别系统【最新版】Python+TensorFlow+Vue3+Django+人工智能+深度学习+卷积神经网络算法
人工智能·python·深度学习