DDPM代码讲解【详细!!!】

文章目录

    • 1、UNet网络结构
      • [1.1 residual网络和attention网络的细节](#1.1 residual网络和attention网络的细节)
      • [1.2 t 的作用](#1.2 t 的作用)
      • [1.3 DDPM 中的 Positional Embedding 的使用](#1.3 DDPM 中的 Positional Embedding 的使用)

1、UNet网络结构

UNet网络的总体框架如下,右边是UNet网络的整体框架,左边是residual网络和attention网络,

下面是UNet网络的详解结构图,左边进行有规律地残差、下采样、attention,右边也是有规律地残差、上采样、attention,相关的代码在图中给出,

1.1 residual网络和attention网络的细节

熟悉CNN的同学应该能看懂下图中的大部分过程。其中的 t 是时间从0到1000的随机值,假如是888,经过Positional Embedding输出长度是128的向量,下面再经过全连接层和silu层等,下面会详细讲解Positional Embedding和residual网络和attention网络,

1.2 t 的作用

1、和原图像一起,计算出 t时刻的图像 x t = 1 − α t ‾ ϵ + α t ‾ x 0 x_t=\sqrt{1-\overline{\alpha_t}}\epsilon+\sqrt{\overline{\alpha_t}}x_0 xt=1−αt ϵ+αt x0

2、将t进行编码,编码后,加到模型中,使模型学习到当前在哪个时刻

1.3 DDPM 中的 Positional Embedding 的使用

左图是Transformer的Positional Embedding,行索引代表第几个单词,列索引代表每个单词的特征向量,右图是DDPM的Positional Embedding,DDPM的Positional Embedding和Transformer的Positional Embedding的区别是DDPM的Positional Embedding并不是给每个词位置编码的,只需要在1000行中随机取出一行就可以了;另一个区别是DDPM的Positional Embedding并没有按照奇数位和偶数位进行拼接,而是按照前后的sin和cos进行拼接的,虽然拼接方式不同,但是最终的效果是一样的,

相关推荐
AI街潜水的八角18 小时前
基于Pytorch深度学习神经网络MNIST手写数字识别系统源码(带界面和手写画板)
pytorch·深度学习·神经网络
资深web全栈开发19 小时前
深度对比 LangChain 8 种文档分割方式:从逻辑底层到选型实战
深度学习·自然语言处理·langchain
540_54020 小时前
ADVANCE Day45
人工智能·python·深度学习
云和数据.ChenGuang20 小时前
人工智能实践之基于CNN的街区餐饮图片识别案例实践
人工智能·深度学习·神经网络·机器学习·cnn
纪伊路上盛名在20 小时前
如何为我们的GPU设备选择合适的CUDA版本和Torch版本?
pytorch·深度学习·torch·cuda·英伟达
小途软件20 小时前
ssm327校园二手交易平台的设计与实现+vue
java·人工智能·pytorch·python·深度学习·语言模型
人工智能培训21 小时前
什么是马尔可夫决策过程(MDP)?马尔可夫性的核心含义是什么?
人工智能·深度学习·机器学习·cnn·智能体·马尔可夫决策
百***24371 天前
GPT-5.2国内调用+API中转+成本管控
大数据·人工智能·深度学习
Cigaretter71 天前
Day 38 早停策略和模型权重的保存
python·深度学习·机器学习
迷你可可小生1 天前
常见神经网络模块
人工智能·深度学习