【Python】使用Pandas和随机森林对鸢尾花数据集进行分类


我在鼓楼的夜色中 为你唱花香自来

在别处 沉默相遇和期待

飞机飞过 车水马龙的城市

千里之外 不离开

把所有的春天 都揉进了一个清晨

把所有停不下的言语变成秘密 关上了门

莫名的情愫啊 请问 谁来将它带走呢

只好把岁月化成歌 留在山河

🎵 鹿先森乐队《春风十里》


在本教程中,我们将演示如何使用pandas库来处理数据,并利用scikit-learn库中的RandomForestClassifier来对鸢尾花数据集进行分类。鸢尾花数据集包含了150个样本,分属于三个不同的品种。我们的目标是构建一个随机森林模型,来预测鸢尾花的种类。

环境准备

首先,确保你的Python环境已安装以下包:

  • numpy
  • pandas
  • scikit-learn

你可以通过运行以下命令来安装这些包(如果尚未安装的话):

bash 复制代码
pip install numpy pandas scikit-learn

数据加载与预处理

使用pandas读取数据非常简单。鸢尾花数据集是scikit-learn库中的一个内置数据集,我们可以直接加载它来进行操作:

python 复制代码
from sklearn.datasets import load_iris
import pandas as pd

# 加载数据
iris = load_iris()
iris_df = pd.DataFrame(data=iris.data, columns=iris.feature_names)
iris_df['species'] = iris.target

# 显示数据的前几行
print(iris_df.head())

这段代码首先从scikit-learn中导入数据集,然后用pandas创建一个DataFrame,方便后续的数据处理。

数据探索

在建模之前,通常需要对数据进行一些基本的探索,了解数据的基本结构和特点:

python 复制代码
# 查看数据描述
print(iris_df.describe())

# 查看种类分布
print(iris_df['species'].value_counts())
划分训练集和测试集
数据探索完毕后,我们将数据划分为训练集和测试集:

```python
from sklearn.model_selection import train_test_split

X = iris_df.iloc[:, :-1]
y = iris_df['species']

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)

构建随机森林模型

接下来,我们使用随机森林进行模型训练:

python 复制代码
from sklearn.ensemble import RandomForestClassifier

# 创建随机森林分类器
rf = RandomForestClassifier(n_estimators=100, random_state=42)

# 训练模型
rf.fit(X_train, y_train)

模型评估

最后,我们评估模型的性能:

python 复制代码
from sklearn.metrics import classification_report, accuracy_score

# 在测试集上进行预测
y_pred = rf.predict(X_test)

# 打印性能指标
print(classification_report(y_test, y_pred))
print("Accuracy:", accuracy_score(y_test, y_pred))

这些步骤展示了如何利用pandas进行数据处理和利用scikit-learn构建及评估随机森林模型的过程。希望你能通过这个案例了解到机器学习项目的基本流程。

以上就是使用Pandas和随机森林进行鸢尾花数据分类的完整流程。通过这个示例,你可以看到数据科学项目从数据加载到预处理,再到模型训练和评估的各个步骤。希望这篇教程对你有所帮助!

相关推荐
小二·2 小时前
Python Web 开发进阶实战:性能压测与调优 —— Locust + Prometheus + Grafana 构建高并发可观测系统
前端·python·prometheus
七牛云行业应用3 小时前
重构实录:我删了 5 家大模型 SDK,只留了 OpenAI 标准库
python·系统架构·大模型·aigc·deepseek
知乎的哥廷根数学学派3 小时前
基于多模态特征融合和可解释性深度学习的工业压缩机异常分类与预测性维护智能诊断(Python)
网络·人工智能·pytorch·python·深度学习·机器学习·分类
一人の梅雨4 小时前
亚马逊SP-API商品详情接口轻量化实战:合规与商业价值提取指南
python
袁气满满~_~5 小时前
Python数据分析学习
开发语言·笔记·python·学习
axinawang6 小时前
二、信息系统与安全--考点--浙江省高中信息技术学考(Python)
python·浙江省高中信息技术
寻星探路6 小时前
【算法专题】滑动窗口:从“无重复字符”到“字母异位词”的深度剖析
java·开发语言·c++·人工智能·python·算法·ai
Dxy12393102166 小时前
python连接minio报错:‘SSL routines‘, ‘ssl3_get_record‘, ‘wrong version number‘
开发语言·python·ssl
吨吨不打野6 小时前
CS336——2. PyTorch, resource accounting
人工智能·pytorch·python
___波子 Pro Max.6 小时前
Python文件读取代码中strip()的作用
python