【Python】使用Pandas和随机森林对鸢尾花数据集进行分类


我在鼓楼的夜色中 为你唱花香自来

在别处 沉默相遇和期待

飞机飞过 车水马龙的城市

千里之外 不离开

把所有的春天 都揉进了一个清晨

把所有停不下的言语变成秘密 关上了门

莫名的情愫啊 请问 谁来将它带走呢

只好把岁月化成歌 留在山河

🎵 鹿先森乐队《春风十里》


在本教程中,我们将演示如何使用pandas库来处理数据,并利用scikit-learn库中的RandomForestClassifier来对鸢尾花数据集进行分类。鸢尾花数据集包含了150个样本,分属于三个不同的品种。我们的目标是构建一个随机森林模型,来预测鸢尾花的种类。

环境准备

首先,确保你的Python环境已安装以下包:

  • numpy
  • pandas
  • scikit-learn

你可以通过运行以下命令来安装这些包(如果尚未安装的话):

bash 复制代码
pip install numpy pandas scikit-learn

数据加载与预处理

使用pandas读取数据非常简单。鸢尾花数据集是scikit-learn库中的一个内置数据集,我们可以直接加载它来进行操作:

python 复制代码
from sklearn.datasets import load_iris
import pandas as pd

# 加载数据
iris = load_iris()
iris_df = pd.DataFrame(data=iris.data, columns=iris.feature_names)
iris_df['species'] = iris.target

# 显示数据的前几行
print(iris_df.head())

这段代码首先从scikit-learn中导入数据集,然后用pandas创建一个DataFrame,方便后续的数据处理。

数据探索

在建模之前,通常需要对数据进行一些基本的探索,了解数据的基本结构和特点:

python 复制代码
# 查看数据描述
print(iris_df.describe())

# 查看种类分布
print(iris_df['species'].value_counts())
划分训练集和测试集
数据探索完毕后,我们将数据划分为训练集和测试集:

```python
from sklearn.model_selection import train_test_split

X = iris_df.iloc[:, :-1]
y = iris_df['species']

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)

构建随机森林模型

接下来,我们使用随机森林进行模型训练:

python 复制代码
from sklearn.ensemble import RandomForestClassifier

# 创建随机森林分类器
rf = RandomForestClassifier(n_estimators=100, random_state=42)

# 训练模型
rf.fit(X_train, y_train)

模型评估

最后,我们评估模型的性能:

python 复制代码
from sklearn.metrics import classification_report, accuracy_score

# 在测试集上进行预测
y_pred = rf.predict(X_test)

# 打印性能指标
print(classification_report(y_test, y_pred))
print("Accuracy:", accuracy_score(y_test, y_pred))

这些步骤展示了如何利用pandas进行数据处理和利用scikit-learn构建及评估随机森林模型的过程。希望你能通过这个案例了解到机器学习项目的基本流程。

以上就是使用Pandas和随机森林进行鸢尾花数据分类的完整流程。通过这个示例,你可以看到数据科学项目从数据加载到预处理,再到模型训练和评估的各个步骤。希望这篇教程对你有所帮助!

相关推荐
AC赳赳老秦10 分钟前
新能源AI趋势:DeepSeek分析光伏/风电数据,助力2026新能源运维升级
运维·人工智能·python·安全·架构·prometheus·deepseek
Learner__Q34 分钟前
GPT模型入门教程:从原理到实现
python·gpt
夕除39 分钟前
js--21
java·python·算法
癫狂的兔子1 小时前
【Python】【机器学习】逻辑回归
python·机器学习·逻辑回归
啊阿狸不会拉杆1 小时前
《计算机视觉:模型、学习和推理》第 2 章-概率概述
人工智能·python·学习·算法·机器学习·计算机视觉·ai
大黄说说1 小时前
Spring Boot 3 新特性详解与迁移指南:从 Java 17 到云原生最佳实践
开发语言·python
尘缘浮梦1 小时前
yield关键字
python
喵手1 小时前
Python爬虫实战:数据质量检测与治理 - 构建健壮的爬虫数据管道(附CSV导出 + SQLite持久化存储)!
爬虫·python·sqlite·爬虫实战·零基础python爬虫教学·数据质量检测与治理·爬虫数据管道
小雨中_1 小时前
2.8 策略梯度(Policy Gradient)算法 与 Actor-critic算法
人工智能·python·深度学习·算法·机器学习