Seurat -- Introduction to scRNA-seq integration 跟随学习记录

文章目录

数据是如何转换的

seurat object 中assays R N A @ l a y e r s RNA@layers RNA@layerscounts 存放了 expression matrix (counts)

NormalizeData(sce) 后 assays R N A @ l a y e r s RNA@layers RNA@layersdata 存放了 normalization后的数据

FindVariableFeatures(sce) 就是把一些细胞高表达一些细胞低表达的高变基因抽出来放在 assays R N A @ f e a t u r e s 下面 S c a l e D a t a ( s c e ) 把上述的高变基因中心化,数据放在 a s s a y s RNA@features下面 ScaleData(sce) 把上述的高变基因中心化,数据放在assays RNA@features下面ScaleData(sce)把上述的高变基因中心化,数据放在assaysRNA@layers$scale.data 下面

RunPCA(sce) 使用assays R N A @ l a y e r s RNA@layers RNA@layersscale.data 数据进行PCA降维

FindNeighbors(sce) 根据PCA结果@reductions$pca 构建SNN图 结果放在@graphs下面

FindClusters(sce) 根据@graphs下面的数据寻找cluster 结果放到 @meta.data$unintegrated_clusters 下面

如果进行了样本整合:

IntegrateLayers(object = sce, method = CCAIntegration, orig.reduction = "pca", new.reduction = "integrated.cca")该方法使用PCA和scale.data下面的数据进行学习,产生一个新的降维数据 @reductions$integrated.cca,然后这个降维数据用于后续的构建SNN图和聚类

原始ifnb数据对象

R 复制代码
library(Seurat)
library(SeuratData)
library(patchwork)

# install dataset
InstallData("ifnb")

# load dataset
ifnb <- LoadData("ifnb")

原始的ifnb数据对象是什么样子?

Splits object后的数据对象

数据对象构建完成后的标准流程

R 复制代码
# run standard anlaysis workflow
ifnb <- NormalizeData(ifnb)
ifnb <- FindVariableFeatures(ifnb)
ifnb <- ScaleData(ifnb)
ifnb <- RunPCA(ifnb)

ifnb <- FindNeighbors(ifnb, dims = 1:30, reduction = "pca")
ifnb <- FindClusters(ifnb, resolution = 2, cluster.name = "unintegrated_clusters")

ifnb <- RunUMAP(ifnb, dims = 1:30, reduction = "pca", reduction.name = "umap.unintegrated")
DimPlot(ifnb, reduction = "umap.unintegrated", group.by = c("stim", "seurat_clusters"))

ifnb <- RunUMAP(ifnb, dims = 1:30, reduction = "integrated.cca")
Normalization后的数据对象
scale 后的数据对象

不同的样本进行整合

R 复制代码
ifnb <- IntegrateLayers(object = ifnb, method = CCAIntegration, orig.reduction = "pca", new.reduction = "integrated.cca",
    verbose = FALSE)

# re-join layers after integration
ifnb[["RNA"]] <- JoinLayers(ifnb[["RNA"]])

ifnb <- FindNeighbors(ifnb, reduction = "integrated.cca", dims = 1:30)
ifnb <- FindClusters(ifnb, resolution = 1)
JoinLayers干了什么
相关推荐
摘星编程2 分钟前
【成长纪实】HarmonyOS Next学习地图:新手避坑指南与核心知识点拆解
学习·华为·harmonyos·鸿蒙开发
deng-c-f3 小时前
Linux C/C++ 学习日记(32):协程(二):Ntyco源码解析
学习·协程·ntyco
Voyager_44 小时前
算法学习记录08——并归的应用(LeetCode[315])
学习·算法·leetcode
deng-c-f5 小时前
Linux C/C++ 学习日记(35):协程(五):同步、多线程、多协程在IO密集型场景中的性能测试
学习·线程·协程·同步·性能
Webb Yu5 小时前
加密货币学习路径
学习·区块链
Han.miracle5 小时前
数据库圣经-----最终章JDBC
java·数据库·学习·maven·database
Broken Arrows5 小时前
解决同一个宿主机的两个容器无法端口互通报错“No route to host“的问题记录
运维·学习·docker
JJJJ_iii5 小时前
【机器学习08】模型评估与选择、偏差与方差、学习曲线
人工智能·笔记·python·深度学习·学习·机器学习
三次拒绝王俊凯6 小时前
在实现“查询课程列表信息”功能时 出现的问题
学习
CosimaLi6 小时前
CMake学习笔记
笔记·学习