Seurat -- Introduction to scRNA-seq integration 跟随学习记录

文章目录

数据是如何转换的

seurat object 中assays R N A @ l a y e r s RNA@layers RNA@layerscounts 存放了 expression matrix (counts)

NormalizeData(sce) 后 assays R N A @ l a y e r s RNA@layers RNA@layersdata 存放了 normalization后的数据

FindVariableFeatures(sce) 就是把一些细胞高表达一些细胞低表达的高变基因抽出来放在 assays R N A @ f e a t u r e s 下面 S c a l e D a t a ( s c e ) 把上述的高变基因中心化,数据放在 a s s a y s RNA@features下面 ScaleData(sce) 把上述的高变基因中心化,数据放在assays RNA@features下面ScaleData(sce)把上述的高变基因中心化,数据放在assaysRNA@layers$scale.data 下面

RunPCA(sce) 使用assays R N A @ l a y e r s RNA@layers RNA@layersscale.data 数据进行PCA降维

FindNeighbors(sce) 根据PCA结果@reductions$pca 构建SNN图 结果放在@graphs下面

FindClusters(sce) 根据@graphs下面的数据寻找cluster 结果放到 @meta.data$unintegrated_clusters 下面

如果进行了样本整合:

IntegrateLayers(object = sce, method = CCAIntegration, orig.reduction = "pca", new.reduction = "integrated.cca")该方法使用PCA和scale.data下面的数据进行学习,产生一个新的降维数据 @reductions$integrated.cca,然后这个降维数据用于后续的构建SNN图和聚类

原始ifnb数据对象

R 复制代码
library(Seurat)
library(SeuratData)
library(patchwork)

# install dataset
InstallData("ifnb")

# load dataset
ifnb <- LoadData("ifnb")

原始的ifnb数据对象是什么样子?

Splits object后的数据对象

数据对象构建完成后的标准流程

R 复制代码
# run standard anlaysis workflow
ifnb <- NormalizeData(ifnb)
ifnb <- FindVariableFeatures(ifnb)
ifnb <- ScaleData(ifnb)
ifnb <- RunPCA(ifnb)

ifnb <- FindNeighbors(ifnb, dims = 1:30, reduction = "pca")
ifnb <- FindClusters(ifnb, resolution = 2, cluster.name = "unintegrated_clusters")

ifnb <- RunUMAP(ifnb, dims = 1:30, reduction = "pca", reduction.name = "umap.unintegrated")
DimPlot(ifnb, reduction = "umap.unintegrated", group.by = c("stim", "seurat_clusters"))

ifnb <- RunUMAP(ifnb, dims = 1:30, reduction = "integrated.cca")
Normalization后的数据对象
scale 后的数据对象

不同的样本进行整合

R 复制代码
ifnb <- IntegrateLayers(object = ifnb, method = CCAIntegration, orig.reduction = "pca", new.reduction = "integrated.cca",
    verbose = FALSE)

# re-join layers after integration
ifnb[["RNA"]] <- JoinLayers(ifnb[["RNA"]])

ifnb <- FindNeighbors(ifnb, reduction = "integrated.cca", dims = 1:30)
ifnb <- FindClusters(ifnb, resolution = 1)
JoinLayers干了什么
相关推荐
Web阿成1 小时前
3.学习webpack配置 尝试打包ts文件
前端·学习·webpack·typescript
雷神乐乐1 小时前
Spring学习(一)——Sping-XML
java·学习·spring
李雨非-19期-河北工职大1 小时前
思考: 与人交际
学习
哦哦~9211 小时前
深度学习驱动的油气开发技术与应用
大数据·人工智能·深度学习·学习
小木_.2 小时前
【python 逆向分析某有道翻译】分析有道翻译公开的密文内容,webpack类型,全程扣代码,最后实现接口调用翻译,仅供学习参考
javascript·python·学习·webpack·分享·逆向分析
Web阿成2 小时前
5.学习webpack配置 babel基本配置
前端·学习·webpack
LeonNo114 小时前
golang , chan学习
开发语言·学习·golang
南宫生4 小时前
力扣-数据结构-1【算法学习day.72】
java·数据结构·学习·算法·leetcode
索然无味io5 小时前
跨站请求伪造之基本介绍
前端·笔记·学习·web安全·网络安全·php