Seurat -- Introduction to scRNA-seq integration 跟随学习记录

文章目录

数据是如何转换的

seurat object 中assays R N A @ l a y e r s RNA@layers RNA@layerscounts 存放了 expression matrix (counts)

NormalizeData(sce) 后 assays R N A @ l a y e r s RNA@layers RNA@layersdata 存放了 normalization后的数据

FindVariableFeatures(sce) 就是把一些细胞高表达一些细胞低表达的高变基因抽出来放在 assays R N A @ f e a t u r e s 下面 S c a l e D a t a ( s c e ) 把上述的高变基因中心化,数据放在 a s s a y s RNA@features下面 ScaleData(sce) 把上述的高变基因中心化,数据放在assays RNA@features下面ScaleData(sce)把上述的高变基因中心化,数据放在assaysRNA@layers$scale.data 下面

RunPCA(sce) 使用assays R N A @ l a y e r s RNA@layers RNA@layersscale.data 数据进行PCA降维

FindNeighbors(sce) 根据PCA结果@reductions$pca 构建SNN图 结果放在@graphs下面

FindClusters(sce) 根据@graphs下面的数据寻找cluster 结果放到 @meta.data$unintegrated_clusters 下面

如果进行了样本整合:

IntegrateLayers(object = sce, method = CCAIntegration, orig.reduction = "pca", new.reduction = "integrated.cca")该方法使用PCA和scale.data下面的数据进行学习,产生一个新的降维数据 @reductions$integrated.cca,然后这个降维数据用于后续的构建SNN图和聚类

原始ifnb数据对象

R 复制代码
library(Seurat)
library(SeuratData)
library(patchwork)

# install dataset
InstallData("ifnb")

# load dataset
ifnb <- LoadData("ifnb")

原始的ifnb数据对象是什么样子?

Splits object后的数据对象

数据对象构建完成后的标准流程

R 复制代码
# run standard anlaysis workflow
ifnb <- NormalizeData(ifnb)
ifnb <- FindVariableFeatures(ifnb)
ifnb <- ScaleData(ifnb)
ifnb <- RunPCA(ifnb)

ifnb <- FindNeighbors(ifnb, dims = 1:30, reduction = "pca")
ifnb <- FindClusters(ifnb, resolution = 2, cluster.name = "unintegrated_clusters")

ifnb <- RunUMAP(ifnb, dims = 1:30, reduction = "pca", reduction.name = "umap.unintegrated")
DimPlot(ifnb, reduction = "umap.unintegrated", group.by = c("stim", "seurat_clusters"))

ifnb <- RunUMAP(ifnb, dims = 1:30, reduction = "integrated.cca")
Normalization后的数据对象
scale 后的数据对象

不同的样本进行整合

R 复制代码
ifnb <- IntegrateLayers(object = ifnb, method = CCAIntegration, orig.reduction = "pca", new.reduction = "integrated.cca",
    verbose = FALSE)

# re-join layers after integration
ifnb[["RNA"]] <- JoinLayers(ifnb[["RNA"]])

ifnb <- FindNeighbors(ifnb, reduction = "integrated.cca", dims = 1:30)
ifnb <- FindClusters(ifnb, resolution = 1)
JoinLayers干了什么
相关推荐
微露清风30 分钟前
系统性学习C++-第五讲-内存管理
java·c++·学习
小张的博客之旅2 小时前
2025年“羊城杯”网络安全大赛 线上初赛 (WriteUp)
python·学习·网络安全
~无忧花开~3 小时前
JavaScript学习笔记(二十八):JavaScript性能优化全攻略
开发语言·前端·javascript·笔记·学习·性能优化·js
机器学习之心3 小时前
PINN物理信息神经网络风电功率预测!引入物理先验知识嵌入学习的风电功率预测新范式!Matlab实现
神经网络·学习·matlab·风电功率预测·物理信息神经网络
HalvmånEver4 小时前
红黑树实现与原理剖析(上篇):核心规则与插入平衡逻辑
数据结构·c++·学习·算法·红黑树
BreezeJuvenile4 小时前
外设模块学习(5)——DS18B20温度传感器(STM32)
stm32·嵌入式硬件·学习·温度传感器·ds18b20
cimeo4 小时前
【C学习】13-数组使用与运算
学习·c#
一只小风华~5 小时前
学习笔记:Vue Router 中的链接匹配机制与样式控制
前端·javascript·vue.js·笔记·学习·ecmascript
月临水7 小时前
Redis 学习笔记(二)
redis·笔记·学习
Nan_Shu_6147 小时前
学习SpringBoot
java·spring boot·后端·学习·spring