Seurat -- Introduction to scRNA-seq integration 跟随学习记录

文章目录

数据是如何转换的

seurat object 中assays R N A @ l a y e r s RNA@layers RNA@layerscounts 存放了 expression matrix (counts)

NormalizeData(sce) 后 assays R N A @ l a y e r s RNA@layers RNA@layersdata 存放了 normalization后的数据

FindVariableFeatures(sce) 就是把一些细胞高表达一些细胞低表达的高变基因抽出来放在 assays R N A @ f e a t u r e s 下面 S c a l e D a t a ( s c e ) 把上述的高变基因中心化,数据放在 a s s a y s RNA@features下面 ScaleData(sce) 把上述的高变基因中心化,数据放在assays RNA@features下面ScaleData(sce)把上述的高变基因中心化,数据放在assaysRNA@layers$scale.data 下面

RunPCA(sce) 使用assays R N A @ l a y e r s RNA@layers RNA@layersscale.data 数据进行PCA降维

FindNeighbors(sce) 根据PCA结果@reductions$pca 构建SNN图 结果放在@graphs下面

FindClusters(sce) 根据@graphs下面的数据寻找cluster 结果放到 @meta.data$unintegrated_clusters 下面

如果进行了样本整合:

IntegrateLayers(object = sce, method = CCAIntegration, orig.reduction = "pca", new.reduction = "integrated.cca")该方法使用PCA和scale.data下面的数据进行学习,产生一个新的降维数据 @reductions$integrated.cca,然后这个降维数据用于后续的构建SNN图和聚类

原始ifnb数据对象

R 复制代码
library(Seurat)
library(SeuratData)
library(patchwork)

# install dataset
InstallData("ifnb")

# load dataset
ifnb <- LoadData("ifnb")

原始的ifnb数据对象是什么样子?

Splits object后的数据对象

数据对象构建完成后的标准流程

R 复制代码
# run standard anlaysis workflow
ifnb <- NormalizeData(ifnb)
ifnb <- FindVariableFeatures(ifnb)
ifnb <- ScaleData(ifnb)
ifnb <- RunPCA(ifnb)

ifnb <- FindNeighbors(ifnb, dims = 1:30, reduction = "pca")
ifnb <- FindClusters(ifnb, resolution = 2, cluster.name = "unintegrated_clusters")

ifnb <- RunUMAP(ifnb, dims = 1:30, reduction = "pca", reduction.name = "umap.unintegrated")
DimPlot(ifnb, reduction = "umap.unintegrated", group.by = c("stim", "seurat_clusters"))

ifnb <- RunUMAP(ifnb, dims = 1:30, reduction = "integrated.cca")
Normalization后的数据对象
scale 后的数据对象

不同的样本进行整合

R 复制代码
ifnb <- IntegrateLayers(object = ifnb, method = CCAIntegration, orig.reduction = "pca", new.reduction = "integrated.cca",
    verbose = FALSE)

# re-join layers after integration
ifnb[["RNA"]] <- JoinLayers(ifnb[["RNA"]])

ifnb <- FindNeighbors(ifnb, reduction = "integrated.cca", dims = 1:30)
ifnb <- FindClusters(ifnb, resolution = 1)
JoinLayers干了什么
相关推荐
知识分享小能手1 小时前
React学习教程,从入门到精通, React 属性(Props)语法知识点与案例详解(14)
前端·javascript·vue.js·学习·react.js·vue·react
茯苓gao4 小时前
STM32G4 速度环开环,电流环闭环 IF模式建模
笔记·stm32·单片机·嵌入式硬件·学习
是誰萆微了承諾4 小时前
【golang学习笔记 gin 】1.2 redis 的使用
笔记·学习·golang
DKPT5 小时前
Java内存区域与内存溢出
java·开发语言·jvm·笔记·学习
aaaweiaaaaaa5 小时前
HTML和CSS学习
前端·css·学习·html
看海天一色听风起雨落6 小时前
Python学习之装饰器
开发语言·python·学习
speop7 小时前
llm的一点学习笔记
笔记·学习
非凡ghost7 小时前
FxSound:提升音频体验,让音乐更动听
前端·学习·音视频·生活·软件需求
ue星空8 小时前
月2期学习笔记
学习·游戏·ue5
萧邀人8 小时前
第二课、熟悉Cocos Creator 编辑器界面
学习