深度学习入门(4) -Object Detection 目标检测

Object Detection

Output:

  1. category label from fixed, known set of categories
  2. bounding box (x, y, width, height)

If only one object is needed to be detected -> add FC layer to the Net pretrianed on ImageNet

Sliding Window

apply a CNN to many different crops of the image, CNN classifies each crop as object / backgroud

but too many windows!! and may detect repeatedly

we need region proposals to find a small set of boxes that are likely to cover all the objects

"Selective Search" quick to generate 2000 regions

R-CNN : Region-Based CNN

  1. Region proposals
  2. warped the image to fixed size 224*224
  3. forward each region through ConvNet independently
  4. output a classification score and also a Bbox of 4 numbers, using the following algorithm
Measurement of boxes (IoU)

I o U = Area of Intersection Area of Union IoU = \frac{\text{Area of Intersection}}{\text{Area of Union}} IoU=Area of UnionArea of Intersection

I o U > 0.5 IoU > 0.5 IoU>0.5 is decent

I o U > 0.7 IoU > 0.7 IoU>0.7 pretty good

I o U > 0.9 IoU > 0.9 IoU>0.9 perfect

Overlapping Boxes: Non-Max Suppression (NMS)
  1. select next highest-scoring box
  2. eliminate lower-scoring boxes with IoU>0.7 (with the box we selected in step1)
  3. If any boxes remain goto 1

Evaluating Object Detectors: mAP(Mean Average Precision)

  1. run detector on all test images + NMS

  2. for each category, computer AP = area under precision vs Recall Curve

    复制代码
     1.	for each detection (high -> low)
     	1.	If it matches some GT(Ground-Truth) box with IoU>0.5 mark it as positive and eliminate the GT
     	2.	otherwise mark is as nagative
     	3.	plot a point on PR curve
     2.	AP = area under PR Curve
  3. mAP = average of AP for each category

  4. COCO mAP: compute mAP for each IoU threshold and take average

How to get AP = 1.0 -> hit all GT boxes with IoU > 0.5, no false positive ranked above any true positive

Fast R-CNN

  1. ConvNet (Backbone network)-> convolutional features for entire high resolution image
  2. Regions of Interest (Rols)
  3. Crop + Resize features
  4. Per-Region Network (light-weight -> fast)
  5. output category and box

Cropping Features: Rol Pool

  1. project proposal onto features
  2. snap to gird cells
  3. divide into 2*2 gird of (roughly) equal subregions
  4. max-pool within each subregions
  5. output the region features (always the same size even if we have different sizes of input regions)

Rol Align

Rol Align -> better align to avoid snapping

Faster R-CNN

Insert Region Proposal Network (RPN) to predict proposals from features

after the backbone network -> RPN -> regional proposals

Imagine an anchor box of fixed size at each point in the feature map

At each point predict whether the corresponding anchor contains an object

for positive boxes, also predict a box transform to regress from anchor box to object box

Use k different anchor boxes at each point

Single stage Faster R-CNN

just use anchor to make classification and object boxes predictions

Semantic Segmentation: Fully Convolutional Network

Input -> Convolutions -> Scores C * H * W -> argmax H * W

use cross-entropy loss of every pixel to train the network

Trick: Downsampling and Upsampling

Downsampling : Pooling, strided convolution

Upsampling

Unpooling

Bed of nails : fill 0

Nearest Neighbour: same numbers in small blocks

Bilinear Interpolation

f x , y = ∑ i , j f i , j max ⁡ ( 0 , 1 − ∣ x − i ∣ ) max ⁡ ( 0 , 1 − ∣ y − j ∣ ) f_{x,y} = \sum_{i,j}{f_{i,j} \max(0, 1-|x-i|) \max(0,1-|y-j|)} fx,y=∑i,jfi,jmax(0,1−∣x−i∣)max(0,1−∣y−j∣)

i,j in Nearest neighbours

Use two closest neighbours in x and y to construct linear approximations

Bicubic Interpolation

three closest neighbours in x and y to construct cubic approximation

Max Unpooling
Learnable Upsampling

Mask R-CNN

Just add Conv layers to predict a mask for each of C classes on the region proposals

Panoptic Segmentation

speperate different objects in the same category

Human Keypoints

Represent the pose of a human by locating a set of keypoints

Joint Instance Segmentation and Pose Estimation

-> General Idea: Add Per-Region "Heads" to Faster / Mask R-CNN

Dense captioning -> nlp -> visual reasoning

3D shape prediction ...

相关推荐
SmartBrain1 小时前
DeerFlow 实践:华为IPD流程的评审智能体设计
人工智能·语言模型·架构
l1t2 小时前
利用DeepSeek实现服务器客户端模式的DuckDB原型
服务器·c语言·数据库·人工智能·postgresql·协议·duckdb
寒月霜华3 小时前
机器学习-数据标注
人工智能·机器学习
九章云极AladdinEdu4 小时前
超参数自动化调优指南:Optuna vs. Ray Tune 对比评测
运维·人工智能·深度学习·ai·自动化·gpu算力
人工智能训练师5 小时前
Ubuntu22.04如何安装新版本的Node.js和npm
linux·运维·前端·人工智能·ubuntu·npm·node.js
cxr8286 小时前
SPARC方法论在Claude Code基于规则驱动开发中的应用
人工智能·驱动开发·claude·智能体
研梦非凡6 小时前
ICCV 2025|从粗到细:用于高效3D高斯溅射的可学习离散小波变换
人工智能·深度学习·学习·3d
幂简集成7 小时前
Realtime API 语音代理端到端接入全流程教程(含 Demo,延迟 280ms)
人工智能·个人开发
龙腾-虎跃7 小时前
FreeSWITCH FunASR语音识别模块
人工智能·语音识别·xcode
智慧地球(AI·Earth)7 小时前
给AI配一台手机+电脑?智谱AutoGLM上线!
人工智能·智能手机·电脑