阿里开源黑白图片上色算法DDColor的部署与测试并将模型转onnx后用c++推理

阿里开源黑白图片上色算法DDColor的部署与测试并将模型转onnx后用c++推理

文章目录

简介

DDColor是一种基于深度学习的图像上色技术,它利用卷积神经网络(CNN)对黑白图像进行上色处理。该模型通常包含一个编码器和一个解码器,编码器提取图像的特征,解码器则根据这些特征生成颜色。DDColor模型能够处理多种类型的图像,并生成自然且逼真的颜色效果。它在图像编辑、电影后期制作以及历史照片修复等领域有广泛的应用。

环境部署

下载源码

git clone https://github.com/piddnad/DDColor.git

安装环境

conda create -n ddcolor python=3.9
conda activate ddcolor
pip install -r requirements.txt
python3 setup.py develop
pip install modelscope
pip install onnx
pip install onnxruntime

下载模型

这里下载

或者运行下面的脚本下载:

python 复制代码
from modelscope.hub.snapshot_download import snapshot_download
model_dir = snapshot_download('damo/cv_ddcolor_image-colorization', cache_dir='./modelscope')
print('model assets saved to %s'%model_dir)
#模型会被下载到modelscope/damo/cv_ddcolor_image-colorization/pytorch_model.pt

测试一下

python 复制代码
import argparse
import cv2
import numpy as np
import os
from tqdm import tqdm
import torch
from basicsr.archs.ddcolor_arch import DDColor
import torch.nn.functional as F

class ImageColorizationPipeline(object):

    def __init__(self, model_path, input_size=256, model_size='large'):

        self.input_size = input_size
        if torch.cuda.is_available():
            self.device = torch.device('cuda')
        else:
            self.device = torch.device('cpu')

        if model_size == 'tiny':
            self.encoder_name = 'convnext-t'
        else:
            self.encoder_name = 'convnext-l'

        self.decoder_type = "MultiScaleColorDecoder"

        if self.decoder_type == 'MultiScaleColorDecoder':
            self.model = DDColor(
                encoder_name=self.encoder_name,
                decoder_name='MultiScaleColorDecoder',
                input_size=[self.input_size, self.input_size],
                num_output_channels=2,
                last_norm='Spectral',
                do_normalize=False,
                num_queries=100,
                num_scales=3,
                dec_layers=9,
            ).to(self.device)
        else:
            self.model = DDColor(
                encoder_name=self.encoder_name,
                decoder_name='SingleColorDecoder',
                input_size=[self.input_size, self.input_size],
                num_output_channels=2,
                last_norm='Spectral',
                do_normalize=False,
                num_queries=256,
            ).to(self.device)

        self.model.load_state_dict(torch.load(model_path, map_location=torch.device('cpu'))['params'],strict=False)
        self.model.eval()

    @torch.no_grad()
    def process(self, img):
        self.height, self.width = img.shape[:2]
        # print(self.width, self.height)
        # if self.width * self.height < 100000:
        #     self.input_size = 256

        img = (img / 255.0).astype(np.float32)
        orig_l = cv2.cvtColor(img, cv2.COLOR_BGR2Lab)[:, :, :1]  # (h, w, 1)

        # resize rgb image -> lab -> get grey -> rgb
        img = cv2.resize(img, (self.input_size, self.input_size))
        img_l = cv2.cvtColor(img, cv2.COLOR_BGR2Lab)[:, :, :1]
        img_gray_lab = np.concatenate((img_l, np.zeros_like(img_l), np.zeros_like(img_l)), axis=-1)
        img_gray_rgb = cv2.cvtColor(img_gray_lab, cv2.COLOR_LAB2RGB)

        tensor_gray_rgb = torch.from_numpy(img_gray_rgb.transpose((2, 0, 1))).float().unsqueeze(0).to(self.device)

        # (1, 2, self.height, self.width)
        output_ab = self.model(tensor_gray_rgb).cpu()

        # resize ab -> concat original l -> rgb
        output_ab_resize = F.interpolate(output_ab, size=(self.height, self.width))[0].float().numpy().transpose(1, 2, 0)
        output_lab = np.concatenate((orig_l, output_ab_resize), axis=-1)
        output_bgr = cv2.cvtColor(output_lab, cv2.COLOR_LAB2BGR)

        output_img = (output_bgr * 255.0).round().astype(np.uint8)

        return output_img


def main():
    parser = argparse.ArgumentParser()
    parser.add_argument('--model_path', type=str,default='pretrain/net_g_200000.pth')
    parser.add_argument('--input_size', type=int,default=512, help='input size for model')
    parser.add_argument('--model_size', type=str,default='large', help='ddcolor model size')
    args = parser.parse_args()

    colorizer = ImageColorizationPipeline(model_path=args.model_path, input_size=args.input_size, model_size=args.model_size)

    img = cv2.imread("./down.jpg")
    image_out = colorizer.process(img)
    cv2.imwrite("./downout.jpg", image_out)


if __name__ == '__main__':
    main()
python test.py  --model_path=./modelscope/damo/cv_ddcolor_image-colorization/pytorch_model.pt

看看效果

效果看起来非常的nice!

模型转onnx

python 复制代码
import argparse
import cv2
import numpy as np
import os
from tqdm import tqdm
import torch
from basicsr.archs.ddcolor_arch import DDColor
import torch.nn.functional as F

class ImageColorizationPipeline(object):

    def __init__(self, model_path, input_size=256, model_size='large'):
        
        self.input_size = input_size
        if torch.cuda.is_available():
            self.device = torch.device('cuda')
        else:
            self.device = torch.device('cpu')

        if model_size == 'tiny':
            self.encoder_name = 'convnext-t'
        else:
            self.encoder_name = 'convnext-l'

        self.decoder_type = "MultiScaleColorDecoder"

        if self.decoder_type == 'MultiScaleColorDecoder':
            self.model = DDColor(
                encoder_name=self.encoder_name,
                decoder_name='MultiScaleColorDecoder',
                input_size=[self.input_size, self.input_size],
                num_output_channels=2,
                last_norm='Spectral',
                do_normalize=False,
                num_queries=100,
                num_scales=3,
                dec_layers=9,
            ).to(self.device)
        else:
            self.model = DDColor(
                encoder_name=self.encoder_name,
                decoder_name='SingleColorDecoder',
                input_size=[self.input_size, self.input_size],
                num_output_channels=2,
                last_norm='Spectral',
                do_normalize=False,
                num_queries=256,
            ).to(self.device)

        print(model_path)

        self.model.load_state_dict(
            torch.load(model_path, map_location=torch.device('cpu'))['params'],
            strict=False)
        self.model.eval()

    @torch.no_grad()
    def process(self, img):
        self.height, self.width = img.shape[:2]
        # print(self.width, self.height)
        # if self.width * self.height < 100000:
        #     self.input_size = 256

        img = (img / 255.0).astype(np.float32)
        orig_l = cv2.cvtColor(img, cv2.COLOR_BGR2Lab)[:, :, :1]  # (h, w, 1)

        # resize rgb image -> lab -> get grey -> rgb
        img = cv2.resize(img, (self.input_size, self.input_size))
        img_l = cv2.cvtColor(img, cv2.COLOR_BGR2Lab)[:, :, :1]
        img_gray_lab = np.concatenate((img_l, np.zeros_like(img_l), np.zeros_like(img_l)), axis=-1)
        img_gray_rgb = cv2.cvtColor(img_gray_lab, cv2.COLOR_LAB2RGB)

        tensor_gray_rgb = torch.from_numpy(img_gray_rgb.transpose((2, 0, 1))).float().unsqueeze(0).to(self.device)
        output_ab = self.model(tensor_gray_rgb).cpu()  # (1, 2, self.height, self.width)
        
        # resize ab -> concat original l -> rgb
        output_ab_resize = F.interpolate(output_ab, size=(self.height, self.width))[0].float().numpy().transpose(1, 2, 0)
        output_lab = np.concatenate((orig_l, output_ab_resize), axis=-1)
        output_bgr = cv2.cvtColor(output_lab, cv2.COLOR_LAB2BGR)

        output_img = (output_bgr * 255.0).round().astype(np.uint8)    

        return output_img


    @torch.no_grad()
    def expirt_onnx(self, img):
        self.height, self.width = img.shape[:2]
        
        img = (img / 255.0).astype(np.float32)
        orig_l = cv2.cvtColor(img, cv2.COLOR_BGR2Lab)[:, :, :1]  # (h, w, 1)

        # resize rgb image -> lab -> get grey -> rgb
        img = cv2.resize(img, (self.input_size, self.input_size))
        img_l = cv2.cvtColor(img, cv2.COLOR_BGR2Lab)[:, :, :1]
        img_gray_lab = np.concatenate((img_l, np.zeros_like(img_l), np.zeros_like(img_l)), axis=-1)
        img_gray_rgb = cv2.cvtColor(img_gray_lab, cv2.COLOR_LAB2RGB)

        tensor_gray_rgb = torch.from_numpy(img_gray_rgb.transpose((2, 0, 1))).float().unsqueeze(0).to(self.device)
        
        mymodel = self.model.to('cpu')
        tensor_gray_rgb = tensor_gray_rgb.to('cpu')
        onnx_save_path = "color.onnx"

        torch.onnx.export(mymodel,  # 要导出的模型
                          tensor_gray_rgb,  # 模型的输入
                          onnx_save_path,  # 导出的文件路径
                          export_params=True,  # 是否将训练参数导出
                          opset_version=12,  # 导出的ONNX的操作集版本
                          do_constant_folding=True,  # 是否执行常量折叠优化
                          input_names=['input'],  # 输入张量的名称
                          output_names=['output'],  # 输出张量的名称
                          dynamic_axes={'input': {0: 'batch_size'}, 
                                        'output': {0: 'batch_size'}})
        return



def main():
    parser = argparse.ArgumentParser()
    parser.add_argument('--model_path', type=str, default='pretrain/net_g_200000.pth')
    parser.add_argument('--input_size', type=int, default=512, help='input size for model')
    parser.add_argument('--model_size', type=str, default='large', help='ddcolor model size')
    args = parser.parse_args()

    colorizer = ImageColorizationPipeline(model_path=args.model_path, input_size=args.input_size, model_size=args.model_size)

    img = cv2.imread("./down.jpg")
    image_out = colorizer.expirt_onnx(img)
    # image_out = colorizer.process(img)
    # cv2.imwrite("./downout.jpg", image_out)


if __name__ == '__main__':
    main()
python model2onnx.py  --model_path=./modelscope/damo/cv_ddcolor_image-colorization/pytorch_model.pt

测试一下生成的onnx模型

python 复制代码
import onnxruntime
import cv2
import numpy as np

def colorize_image(input_image_path, output_image_path, model_path):
    input_image = cv2.imread(input_image_path)

    img = (input_image / 255.0).astype(np.float32)
    orig_l = cv2.cvtColor(img, cv2.COLOR_BGR2Lab)[:, :, :1]  # (h, w, 1)
    img = cv2.resize(img, (512, 512))
    img_l = cv2.cvtColor(img, cv2.COLOR_BGR2Lab)[:, :, :1]
    img_gray_lab = np.concatenate((img_l, np.zeros_like(img_l), np.zeros_like(img_l)), axis=-1)
    input_blob = cv2.cvtColor(img_gray_lab, cv2.COLOR_LAB2RGB)

    # Change data layout from HWC to CHW
    input_blob = np.transpose(input_blob, (2, 0, 1))
    input_blob = np.expand_dims(input_blob, axis=0)  # Add batch dimension

    # Initialize ONNX Runtime Inference Session
    session = onnxruntime.InferenceSession(model_path)

    # Perform inference
    output_blob = session.run(None, {'input': input_blob})[0]

    # Post-process the output
    output_blob = np.squeeze(output_blob)  # Remove batch dimension

    # Separate ab channels
    # Change data layout from CHW to HWC
    output_ab = output_blob.transpose((1, 2, 0))

    # Resize to match input image size
    output_ab = cv2.resize(output_ab, (input_image.shape[1], input_image.shape[0]))
    output_lab = np.concatenate((orig_l, output_ab), axis=-1)

    # Convert LAB to BGR
    output_bgr = cv2.cvtColor(output_lab, cv2.COLOR_LAB2BGR)

    output_bgr = output_bgr*255

    # Save the colorized image
    cv2.imwrite(output_image_path, output_bgr)


# Define paths
input_image_path = 'down.jpg'
output_image_path = 'downout2.jpg'
model_path = 'color.onnx'

# Perform colorization
colorize_image(input_image_path, output_image_path, model_path)
python testonnx.py

看看效果

嗯,模型没有问题,下面开始用c++推理

C++ 推理

未完待续

相关推荐
羊小猪~~21 分钟前
数据结构C语言描述2(图文结合)--有头单链表,无头单链表(两种方法),链表反转、有序链表构建、排序等操作,考研可看
c语言·数据结构·c++·考研·算法·链表·visual studio
脉牛杂德1 小时前
多项式加法——C语言
数据结构·c++·算法
legend_jz1 小时前
STL--哈希
c++·算法·哈希算法
CSUC1 小时前
【C++】父类参数有默认值时子类构造函数列表中可以省略该参数
c++
Vanranrr1 小时前
C++ QT
java·c++·qt
鸿儒5171 小时前
C++ lambda 匿名函数
开发语言·c++
van叶~2 小时前
算法妙妙屋-------1.递归的深邃回响:二叉树的奇妙剪枝
c++·算法
knighthood20013 小时前
解决:ros进行gazebo仿真,rviz没有显示传感器数据
c++·ubuntu·ros
半盏茶香3 小时前
【C语言】分支和循环详解(下)猜数字游戏
c语言·开发语言·c++·算法·游戏
小堇不是码农3 小时前
在VScode中配置C_C++环境
c语言·c++·vscode