VLAD NETVLAD

VLAD:

先用sift对图像提取特征点并计算其描述子.对一张图像的n个d维的描述子进行聚类得到k个聚类中心,对每个类所包含的描述子减去聚类中心后求和得到一个向量,k个类别就得到k个d维向量,用这k个d维向量去表达一张图像

NETVLAD:

改进1: 用所有描述子对每一个聚类中心的差值求加权平均和.即对描述子到聚类中心的差值乘以一个权重再去求和.权重是所有描述子到聚类中心距离再做一个softmax得到的.

改进2: 引入卷积网络直接对一张图像提取这k个d维向量

网络: 一张图像经过卷积得到wxhxd的featuremap,用N表示wxh,然后网络分成两个分支,一个分支对N个d维向量计算出k个聚类中心.另一个分支去计算权重.计算完权重和聚类中心就可以减去聚类中心加权求和后得到一张图的kxd的向量表达.

计算N个描述子到K个聚类中心的权重,结果应该是Nxk的矩阵.计算权重的分支对wxhxd的fm用k个1x1卷积核卷积得wxh x k的fm,代表N个k维向量,每个k有N个向量,用每个k下的N个向量求softmax,得到描述子到每个聚类中心加权的权重.

总结:不再需要提取特征点即可得到一张图的向量表达,就没有特征点了.

参考:NetVLAD原理详解和推导-CSDN博客

NeXtVLAD:

对网络做了改进,加了残差连接和多尺度的网络结构(一层出来经过多个不同尺度的卷积核的结果再融合到一起)

参数量从netvlad的268MB降低到netxtvlad的 71MB

参考:NetVLAD系列代码串讲 - 知乎

用chatgpt总结一下:

本文讨论了图像特征提取和表达的相关技术,包括 SIFT、VLAD、NETVLAD 和 NeXtVLAD。关键要点包括:

  • VLAD:对图像的描述子进行聚类,得到聚类中心,然后对每个类所包含的描述子减去聚类中心后求和,用这 k 个 d 维向量去表达一张图像。

  • NETVLAD:对 VLAD 进行改进,用所有描述子对每一个聚类中心的差值求加权平均和,并引入卷积网络直接对一张图像提取这 k 个 d 维向量。

  • NeXtVLAD:对网络做了改进,加了残差连接和多尺度的网络结构,降低了参数量。

相关推荐
de之梦-御风1 小时前
【深度学习】模型从训练完成到产线运行的完整使用方式
人工智能·深度学习
_codemonster1 小时前
深度学习实战(基于pytroch)系列完整目录
人工智能·深度学习
Chris_12192 小时前
Halcon学习笔记-Day6进阶:工业级视觉系统核心技术详解
人工智能·python·深度学习·halcon
victory04315 小时前
llama2 MLP 门控FFN
深度学习·transformer
数据分享者5 小时前
猫狗图像分类数据集-21616张标准化128x128像素JPEG图像-适用于计算机视觉教学研究与深度学习模型训练-研究人员、开发者和学生提供实验平台
深度学习·计算机视觉·分类
小途软件5 小时前
ssm607家政公司服务平台的设计与实现+vue
java·人工智能·pytorch·python·深度学习·语言模型
汤姆yu6 小时前
基于深度学习的暴力行为识别系统
人工智能·深度学习
进击切图仔6 小时前
Realsense 相机测试及说明
网络·人工智能·深度学习·数码相机
头发够用的程序员6 小时前
Ultralytics 代码库深度解读【六】:数据加载机制深度解析
人工智能·pytorch·python·深度学习·yolo·边缘计算·模型部署
540_5407 小时前
ADVANCE Day43
人工智能·python·深度学习