VLAD NETVLAD

VLAD:

先用sift对图像提取特征点并计算其描述子.对一张图像的n个d维的描述子进行聚类得到k个聚类中心,对每个类所包含的描述子减去聚类中心后求和得到一个向量,k个类别就得到k个d维向量,用这k个d维向量去表达一张图像

NETVLAD:

改进1: 用所有描述子对每一个聚类中心的差值求加权平均和.即对描述子到聚类中心的差值乘以一个权重再去求和.权重是所有描述子到聚类中心距离再做一个softmax得到的.

改进2: 引入卷积网络直接对一张图像提取这k个d维向量

网络: 一张图像经过卷积得到wxhxd的featuremap,用N表示wxh,然后网络分成两个分支,一个分支对N个d维向量计算出k个聚类中心.另一个分支去计算权重.计算完权重和聚类中心就可以减去聚类中心加权求和后得到一张图的kxd的向量表达.

计算N个描述子到K个聚类中心的权重,结果应该是Nxk的矩阵.计算权重的分支对wxhxd的fm用k个1x1卷积核卷积得wxh x k的fm,代表N个k维向量,每个k有N个向量,用每个k下的N个向量求softmax,得到描述子到每个聚类中心加权的权重.

总结:不再需要提取特征点即可得到一张图的向量表达,就没有特征点了.

参考:NetVLAD原理详解和推导-CSDN博客

NeXtVLAD:

对网络做了改进,加了残差连接和多尺度的网络结构(一层出来经过多个不同尺度的卷积核的结果再融合到一起)

参数量从netvlad的268MB降低到netxtvlad的 71MB

参考:NetVLAD系列代码串讲 - 知乎

用chatgpt总结一下:

本文讨论了图像特征提取和表达的相关技术,包括 SIFT、VLAD、NETVLAD 和 NeXtVLAD。关键要点包括:

  • VLAD:对图像的描述子进行聚类,得到聚类中心,然后对每个类所包含的描述子减去聚类中心后求和,用这 k 个 d 维向量去表达一张图像。

  • NETVLAD:对 VLAD 进行改进,用所有描述子对每一个聚类中心的差值求加权平均和,并引入卷积网络直接对一张图像提取这 k 个 d 维向量。

  • NeXtVLAD:对网络做了改进,加了残差连接和多尺度的网络结构,降低了参数量。

相关推荐
赵钰老师33 分钟前
【Deepseek、ChatGPT】智能气候前沿:AI Agent结合机器学习与深度学习在全球气候变化驱动因素预测中的应用
人工智能·python·深度学习·机器学习·数据分析
Start_Present2 小时前
Pytorch 第十三回:神经网络编码器——自动编解码器
pytorch·python·深度学习·神经网络
Y1nhl4 小时前
搜广推校招面经六十四
人工智能·深度学习·leetcode·广告算法·推荐算法·搜索算法
Y1nhl5 小时前
Pyspark学习一:概述
数据库·人工智能·深度学习·学习·spark·pyspark·大数据技术
简简单单做算法7 小时前
基于mediapipe深度学习和限定半径最近邻分类树算法的人体摔倒检测系统python源码
人工智能·python·深度学习·算法·分类·mediapipe·限定半径最近邻分类树
就决定是你啦!8 小时前
机器学习 第一章 绪论
人工智能·深度学习·机器学习
liruiqiang0511 小时前
循环神经网络 - 简单循环网络
人工智能·rnn·深度学习·神经网络·机器学习
鸿蒙布道师12 小时前
OpenAI战略转向:开源推理模型背后的行业博弈与技术趋势
人工智能·深度学习·神经网络·opencv·自然语言处理·openai·deepseek
小白的高手之路13 小时前
torch.nn.Conv2d介绍——Pytorch中的二维卷积层
人工智能·pytorch·python·深度学习·神经网络·机器学习·cnn
船长@Quant13 小时前
PyTorch量化进阶教程:第五章 Transformer 在量化交易中的应用
pytorch·python·深度学习·transformer·量化交易·sklearn·ta-lab