VLAD NETVLAD

VLAD:

先用sift对图像提取特征点并计算其描述子.对一张图像的n个d维的描述子进行聚类得到k个聚类中心,对每个类所包含的描述子减去聚类中心后求和得到一个向量,k个类别就得到k个d维向量,用这k个d维向量去表达一张图像

NETVLAD:

改进1: 用所有描述子对每一个聚类中心的差值求加权平均和.即对描述子到聚类中心的差值乘以一个权重再去求和.权重是所有描述子到聚类中心距离再做一个softmax得到的.

改进2: 引入卷积网络直接对一张图像提取这k个d维向量

网络: 一张图像经过卷积得到wxhxd的featuremap,用N表示wxh,然后网络分成两个分支,一个分支对N个d维向量计算出k个聚类中心.另一个分支去计算权重.计算完权重和聚类中心就可以减去聚类中心加权求和后得到一张图的kxd的向量表达.

计算N个描述子到K个聚类中心的权重,结果应该是Nxk的矩阵.计算权重的分支对wxhxd的fm用k个1x1卷积核卷积得wxh x k的fm,代表N个k维向量,每个k有N个向量,用每个k下的N个向量求softmax,得到描述子到每个聚类中心加权的权重.

总结:不再需要提取特征点即可得到一张图的向量表达,就没有特征点了.

参考:NetVLAD原理详解和推导-CSDN博客

NeXtVLAD:

对网络做了改进,加了残差连接和多尺度的网络结构(一层出来经过多个不同尺度的卷积核的结果再融合到一起)

参数量从netvlad的268MB降低到netxtvlad的 71MB

参考:NetVLAD系列代码串讲 - 知乎

用chatgpt总结一下:

本文讨论了图像特征提取和表达的相关技术,包括 SIFT、VLAD、NETVLAD 和 NeXtVLAD。关键要点包括:

  • VLAD:对图像的描述子进行聚类,得到聚类中心,然后对每个类所包含的描述子减去聚类中心后求和,用这 k 个 d 维向量去表达一张图像。

  • NETVLAD:对 VLAD 进行改进,用所有描述子对每一个聚类中心的差值求加权平均和,并引入卷积网络直接对一张图像提取这 k 个 d 维向量。

  • NeXtVLAD:对网络做了改进,加了残差连接和多尺度的网络结构,降低了参数量。

相关推荐
CV缝合救星20 小时前
【Arxiv 2025 预发行论文】重磅突破!STAR-DSSA 模块横空出世:显著性+拓扑双重加持,小目标、大场景统统拿下!
人工智能·深度学习·计算机视觉·目标跟踪·即插即用模块
蓝桉8021 天前
如何进行神经网络的模型训练(视频代码中的知识点记录)
人工智能·深度学习·神经网络
星期天要睡觉1 天前
深度学习——数据增强(Data Augmentation)
人工智能·深度学习
笑脸惹桃花1 天前
50系显卡训练深度学习YOLO等算法报错的解决方法
深度学习·算法·yolo·torch·cuda
anneCoder1 天前
AI大模型应用研发工程师面试知识准备目录
人工智能·深度学习·机器学习
骑驴看星星a1 天前
没有深度学习
人工智能·深度学习
THMAIL1 天前
深度学习从入门到精通 - AutoML与神经网络搜索(NAS):自动化模型设计未来
人工智能·python·深度学习·神经网络·算法·机器学习·逻辑回归
山烛1 天前
深度学习:残差网络ResNet与迁移学习
人工智能·python·深度学习·残差网络·resnet·迁移学习
THMAIL1 天前
量化基金从小白到大师 - 金融数据获取大全:从免费API到Tick级数据实战指南
人工智能·python·深度学习·算法·机器学习·金融·kafka
Tiger Z1 天前
《动手学深度学习v2》学习笔记 | 2.4 微积分 & 2.5 自动微分
pytorch·深度学习·ai