VLAD NETVLAD

VLAD:

先用sift对图像提取特征点并计算其描述子.对一张图像的n个d维的描述子进行聚类得到k个聚类中心,对每个类所包含的描述子减去聚类中心后求和得到一个向量,k个类别就得到k个d维向量,用这k个d维向量去表达一张图像

NETVLAD:

改进1: 用所有描述子对每一个聚类中心的差值求加权平均和.即对描述子到聚类中心的差值乘以一个权重再去求和.权重是所有描述子到聚类中心距离再做一个softmax得到的.

改进2: 引入卷积网络直接对一张图像提取这k个d维向量

网络: 一张图像经过卷积得到wxhxd的featuremap,用N表示wxh,然后网络分成两个分支,一个分支对N个d维向量计算出k个聚类中心.另一个分支去计算权重.计算完权重和聚类中心就可以减去聚类中心加权求和后得到一张图的kxd的向量表达.

计算N个描述子到K个聚类中心的权重,结果应该是Nxk的矩阵.计算权重的分支对wxhxd的fm用k个1x1卷积核卷积得wxh x k的fm,代表N个k维向量,每个k有N个向量,用每个k下的N个向量求softmax,得到描述子到每个聚类中心加权的权重.

总结:不再需要提取特征点即可得到一张图的向量表达,就没有特征点了.

参考:NetVLAD原理详解和推导-CSDN博客

NeXtVLAD:

对网络做了改进,加了残差连接和多尺度的网络结构(一层出来经过多个不同尺度的卷积核的结果再融合到一起)

参数量从netvlad的268MB降低到netxtvlad的 71MB

参考:NetVLAD系列代码串讲 - 知乎

用chatgpt总结一下:

本文讨论了图像特征提取和表达的相关技术,包括 SIFT、VLAD、NETVLAD 和 NeXtVLAD。关键要点包括:

  • VLAD:对图像的描述子进行聚类,得到聚类中心,然后对每个类所包含的描述子减去聚类中心后求和,用这 k 个 d 维向量去表达一张图像。

  • NETVLAD:对 VLAD 进行改进,用所有描述子对每一个聚类中心的差值求加权平均和,并引入卷积网络直接对一张图像提取这 k 个 d 维向量。

  • NeXtVLAD:对网络做了改进,加了残差连接和多尺度的网络结构,降低了参数量。

相关推荐
J先生x1 小时前
【IP101】图像处理进阶:从直方图均衡化到伽马变换,全面掌握图像增强技术
图像处理·人工智能·学习·算法·计算机视觉
灬0灬灬0灬7 小时前
深度学习---常用优化器
人工智能·深度学习
BioRunYiXue8 小时前
一文了解氨基酸的分类、代谢和应用
人工智能·深度学习·算法·机器学习·分类·数据挖掘·代谢组学
Blossom.11811 小时前
低代码开发:开启软件开发的新篇章
人工智能·深度学习·安全·低代码·机器学习·计算机视觉·数据挖掘
机器学习之心12 小时前
SHAP分析!Transformer-GRU组合模型SHAP分析,模型可解释不在发愁!
深度学习·gru·transformer·shap分析
RK_Dangerous12 小时前
【深度学习】计算机视觉(18)——从应用到设计
人工智能·深度学习·计算机视觉
Stara051113 小时前
基于注意力机制与iRMB模块的YOLOv11改进模型—高效轻量目标检测新范式
人工智能·python·深度学习·神经网络·目标检测·计算机视觉·yolov11
scdifsn14 小时前
动手学深度学习12.4.硬件-笔记&练习(PyTorch)
pytorch·笔记·深度学习·缓存·内存·硬盘·深度学习硬件
知来者逆14 小时前
计算机视觉——MedSAM2医学影像一键实现3D与视频分割的高效解决方案
人工智能·深度学习·计算机视觉·图像分割·智能医疗·万物分割
强化学习与机器人控制仿真14 小时前
openpi 入门教程
开发语言·人工智能·python·深度学习·神经网络·机器人·自动驾驶