泰坦尼克号乘客生存情况预测分析2


泰坦尼克号乘客生存情况预测分析1
泰坦尼克号乘客生存情况预测分析2
泰坦尼克号乘客生存情况预测分析3
泰坦尼克号乘客生存情况预测分析总


背景描述

Titanic数据集在数据分析领域是十分经典的数据集,非常适合刚入门的小伙伴进行学习!

泰坦尼克号轮船的沉没是历史上最为人熟知的海难事件之一。1912年4月15日,在她的处女航中,泰坦尼克号在与冰山相撞后沉没,在船上的 2224 名乘客和机组人员中,共造成 1502 人死亡。这场耸人听闻的悲剧震惊了国际社会,从而促进了船舶安全规定的完善。造成海难失事的原因之一是乘客和机组人员没有足够的救生艇。尽管在沉船事件中幸存者有一些运气因素,但有些人比其他人更容易存活下来,究竟有哪些因素影响着最终乘客的生存与否呢?

数据说明

在该数据集中,共包括三个文件,分别代表训练集测试集 以及测试集的答案

数据描述:

变量名称 PassengerId Survived Pclass Name Sex Age SibSp Parch Ticket Fare Cabin Embarked
变量解释 乘客编号 是否存活 船舱等级 姓名 性别 年龄 兄弟姐妹和配偶数量 父母与子女数量 票的编号 票价 座位号 登船码头
数据类型 numeric categorical categorical String categorical categorical numeric numeric string numeric string categorical

:以上数据类型均为经过预处理后的数据类型!

数据来源

Titanic Competition : How top LB got their score


目录

  • [二 特征工程](#二 特征工程)
    • [1. 合并训练集与测试集](#1. 合并训练集与测试集)
    • [2. 缺失值处理](#2. 缺失值处理)
      • [2.1 填充Embarked字段](#2.1 填充Embarked字段)
      • [2.2 填充船票Fare字段](#2.2 填充船票Fare字段)
      • [2.3 填充年龄Age字段](#2.3 填充年龄Age字段)
    • [3 不同特征字段的数据处理](#3 不同特征字段的数据处理)
      • [3.1 先对Embarked、Sex以及Pclass等用dummy处理](#3.1 先对Embarked、Sex以及Pclass等用dummy处理)
      • [3.2 票价分级处理](#3.2 票价分级处理)
      • [3.3 名字处理](#3.3 名字处理)
      • [3.4 Cabin处理](#3.4 Cabin处理)
      • [3.5 Ticket处理](#3.5 Ticket处理)
    • [4. 利用随机森林预测Age缺失值](#4. 利用随机森林预测Age缺失值)
    • [5. 各特征与Survived的相关系数排序](#5. 各特征与Survived的相关系数排序)
    • [6. 保存特征处理后的数据](#6. 保存特征处理后的数据)
    • [7. 小结](#7. 小结)

二 特征工程

1. 合并训练集与测试集

在进行特征工程的时候,我们不仅需要对训练数据进行处理,还需要同时将测试数据同训练数据一起处理,使得二者具有相同的数据类型和数据分布。

python 复制代码
import pandas as pd

train = pd.read_csv('train.csv')
test = pd.read_csv('test.csv')
train_and_test = train.append(test, sort=False) # 合并训练集与测试集
PassengerId = test['PassengerId']
train_and_test.shape

2. 缺失值处理

对Embarked直接用众数填充;

对Fare用均值填充;

对Age,建立模型预测;

2.1 填充Embarked字段

python 复制代码
mode = train_and_test['Embarked'].mode().iloc[0] # 找到众数
train_and_test['Embarked'].fillna(mode, inplace=True)
train_and_test.info()

2.2 填充船票Fare字段

python 复制代码
train_and_test['Fare'].mean()
python 复制代码
Fare_mean = train_and_test['Fare'].mean()
train_and_test['Fare'].fillna(Fare_mean, inplace=True)
train_and_test.info()

2.3 填充年龄Age字段

为尽可能用多的特征去预测Age的值,先对Cabin、Embarked、Name、Sex、Ticket、Pclass等特征进行处理,模型预测见后;

3 不同特征字段的数据处理

3.1 先对Embarked、Sex以及Pclass等用dummy处理

对分类特征进行编码

python 复制代码
cols = ['Embarked', 'Sex', 'Pclass']
train_and_test = pd.get_dummies(train_and_test, columns=cols, prefix_sep='__')
train_and_test.info()

3.2 票价分级处理

我们可以尝试将Fare分桶处理,使用qcut函数。qcut是根据这些值的频率来选择箱子的均匀间隔,每个箱子中含有的数的数量是相同的;

python 复制代码
# 临时列
train_and_test['Fare_bin'] = pd.qcut(train_and_test['Fare'], 5)

#编码
train_and_test['Fare_bin_id'] = pd.factorize(train_and_test['Fare_bin'])[0]
fare_bin_dummies_df = pd.get_dummies(train_and_test['Fare_bin_id']).rename(columns=lambda x : 'Fare_' + str(x))
train_and_test = pd.concat([train_and_test, fare_bin_dummies_df], axis=1)
train_and_test.drop(['Fare_bin'], axis=1, inplace=True)

3.3 名字处理

对名字Name进行处理,提取其特征;

提取称呼

python 复制代码
train_and_test['Title'] = train_and_test['Name'].apply(lambda x : x.split(',')[1].split('.')[0].strip())
train_and_test['Title']
python 复制代码
# 将各式称呼进行统一化处理
# 头衔映射表
titleDict = {
    "Capt" :      "Officer", 
    "Col"  :      "Officer",
    "Major":      "Officer",
    "Jonkheer":   "Royalty",
    "Don":        "Royalty",
    "Sir" :       "Royalty",
    "Dr":         "Officer",
    "Rev":        "Officer",
    "the Countess":"Royalty",
    "Dona":       "Royalty",
    "Mme":        "Mrs",
    "Mlle":       "Miss",
    "Ms":         "Mrs",
    "Mr" :        "Mr",
    "Mrs" :       "Mrs",
    "Miss" :      "Miss",
    "Master" :    "Master",
    "Lady" :      "Royalty"
}
train_and_test['Title'] = train_and_test['Title'].map(titleDict)
train_and_test['Title'].value_counts()

one_hot编码

python 复制代码
train_and_test['Title'] = pd.factorize(train_and_test['Title'])[0]
title_dummies_df = pd.get_dummies(train_and_test['Title'], prefix=train_and_test[['Title']].columns[0])
train_and_test = pd.concat([train_and_test, title_dummies_df], axis=1)
train_and_test.info()

提取长度特征

python 复制代码
train_and_test['Name_length'] = train_and_test['Name'].apply(len)
train_and_test['Name_length']

3.4 Cabin处理

Cabin缺失值过多,将其分为有无两类,进行编码,如果缺失,即为0,否则为1;

python 复制代码
train_and_test.loc[train_and_test.Cabin.isnull(), 'Cabin'] = 'U0'
train_and_test['Cabin'] = train_and_test['Cabin'].apply(lambda x : 0 if x == 'U0' else 1)
train_and_test['Cabin']

3.5 Ticket处理

Ticket有字母和数字之分,对于不同的字母,可能在很大程度上就意味着船舱等级或者不同船舱的位置,也会对Survived产生一定的影响,所以我们将Ticket中的字母分开,为数字的部分则分为一类。

python 复制代码
train_and_test['Ticket_Letter'] = train_and_test['Ticket'].str.split().str[0]
train_and_test['Ticket_Letter'] = train_and_test['Ticket_Letter'].apply(lambda x : 'U0' if x.isnumeric() else x)

# 将Ticket_Letter factorize
train_and_test['Ticket_Letter'] = pd.factorize(train_and_test['Ticket_Letter'])[0]
train_and_test['Ticket_Letter']

4. 利用随机森林预测Age缺失值

python 复制代码
from sklearn.ensemble import RandomForestRegressor  # 随机森林回归

missing_age = train_and_test.drop(['PassengerId', 'Survived', 'Name', 'Ticket'], axis=1) # 去除字符串类型的字段
missing_age_train = missing_age[missing_age['Age'].notnull()]
missing_age_test = missing_age[missing_age['Age'].isnull()]

X_train = missing_age_train.iloc[:,1:]
y_train = missing_age_train.iloc[:,0]
X_test = missing_age_test.iloc[:,1:]

rfr = RandomForestRegressor(n_estimators=1000, n_jobs=-1)
rfr.fit(X_train, y_train)
y_predict = rfr.predict(X_test)
train_and_test.loc[train_and_test['Age'].isnull(), 'Age'] = y_predict
train_and_test.info()

5. 各特征与Survived的相关系数排序

根据生存情况与其他各特征的相关系数,按系数倒序排序,筛选出重要特征 -- 重要特征

python 复制代码
train_and_test.corr()['Survived'].abs().sort_values(ascending=False)

6. 保存特征处理后的数据

python 复制代码
train_and_test.to_csv('经过特征工程处理后的数据.csv', index=None)

7. 小结

特征工程这一章主要做了以下工作:

  • 合并训练集和测试集
    • 为了使二者具有相同的数据类型和数据分布;
  • 缺失值处理:
    • Embarked:众数填充;
    • Fare:平均值填充;
    • Age:随机森林预测填充;
  • 各特征字段的数据处理:
    • Embarked,Sex,Pclass: 直接dummy编码;
    • Fare: 先分桶处理,再dummy编码;
    • Name: 先提取称呼,再对称呼进行人群分类,最后dummy处理;
    • cabin:缺失值较多,根据是否缺失划分类别,缺失为0,否则为1;
    • Ticket:只保留其中字母,并对字母进行数字转换;
  • 随机森林建模预测Age缺失值;
  • 对各特征与生存与否进行了相关系数大小排序;

本章主要关于到泰坦尼克号数据的特征工程处理,后续就是建模预测部分了,建模预测打算分两部分,一部分只是简单涉及一些算法,参数全部默认;另一部分,会加些算法调参、优化以及复杂模型等,这几天就会安排上!

如果本文有存在不足的地方,欢迎大家在评论区留言

相关推荐
赛丽曼29 分钟前
机器学习-分类算法评估标准
人工智能·机器学习·分类
boonya13 小时前
StarRocks强大的实时数据分析
数据挖掘·数据分析
paradoxjun1 天前
落地级分类模型训练框架搭建(1):resnet18/50和mobilenetv2在CIFAR10上测试结果
人工智能·深度学习·算法·计算机视觉·分类
sci_ei1231 天前
高水平EI会议-第四届机器学习、云计算与智能挖掘国际会议
数据结构·人工智能·算法·机器学习·数据挖掘·机器人·云计算
Denodo1 天前
10倍数据交付提升 | 通过逻辑数据仓库和数据编织高效管理和利用大数据
大数据·数据库·数据仓库·人工智能·数据挖掘·数据分析·数据编织
Zda天天爱打卡1 天前
【机器学习实战高阶】基于深度学习的图像分割
人工智能·深度学习·机器学习·数据挖掘·数据可视化
绒绒毛毛雨1 天前
“大模型横扫千军”背后的大数据挖掘--浅谈MapReduce
人工智能·数据挖掘·mapreduce
机器学习小小白1 天前
【数据挖掘实战】 房价预测
人工智能·python·机器学习·数据挖掘
史嘉庆2 天前
Pandas数据分析 【Series | DataFrame】
python·数据挖掘·数据分析·pandas
IPdodo全球网络服务2 天前
美区TikTok解封后如何回归使用?
人工智能·数据挖掘·回归·tiktok