ChuanhuChatGPT集成百川大模型

搭建步骤:

  1. 拷贝本地模型,把下载好的Baichuan2-7B-Chat拷贝到models目录下

  2. 修改modules\models\base_model.py文件,class ModelType增加Baichuan

    |-----------------------------------------------------------------------------------------------------------|
    | Baichuan ``= 16 elif "baichuan" in model_name_lower: ``model_type ``= ModelType.Baichuan |

  3. 修改modules\models\models.py文件,get_model方法增加ModelType.Baichuan

    |-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
    | elif model_type ``=``= ModelType.Baichuan: ``from .Baichuan ``import Baichuan_Client ``model ``= Baichuan_Client(model_name, user_name``=``user_name) |

  4. 增加modules\models\Baichuan.py文件

    |-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
    | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 | from modelscope ``import snapshot_download, AutoModelForCausalLM, AutoTokenizer,GenerationConfig from transformers ``import AutoModelForCausalLM, AutoTokenizer from transformers.generation ``import GenerationConfig import logging import colorama from ..index_func ``import * from ..presets ``import * from ..utils ``import * from .base_model ``import BaseLLMModel from ..presets ``import MODEL_METADATA from datetime ``import datetime class Baichuan_Client(BaseLLMModel): ``def __init__(``self``, model_name, user_name``=``"") ``-``> ``None``: ``super``().__init__(model_name``=``model_name, user``=``user_name) ``import torch ``from transformers ``import AutoModel, AutoTokenizer ``global CHATGLM_TOKENIZER, CHATGLM_MODEL ``print``(``"__init__ Baichuan_Client"``) ``if CHATGLM_TOKENIZER ``is None or CHATGLM_MODEL ``is None``: ``model_path ``= None ``if os.path.exists(``"models"``): ``model_dirs ``= os.listdir(``"models"``) ``if model_name ``in model_dirs: ``model_path ``= f``"models/{model_name}" ``if model_path ``is not None``: ``model_source ``= model_path ``else``: ``model_source ``= snapshot_download(f``"baichuan-inc/{model_name}"``, revision``=``'v1.0.4'``) ``CHATGLM_TOKENIZER ``= AutoTokenizer.from_pretrained( ``model_source, device_map``=``"auto"``, trust_remote_code``=``True``, torch_dtype``=``torch.float16 ``) ``quantified ``= False ``if "int4" in model_name: ``quantified ``= True ``model ``= AutoModelForCausalLM.from_pretrained( ``model_source, device_map``=``"auto"``, trust_remote_code``=``True``, torch_dtype``=``torch.float16 ``) ``model.generation_config ``= GenerationConfig.from_pretrained(model_source) ``model ``= model.``eval``() ``CHATGLM_MODEL ``= model ``def _get_glm_style_input(``self``): ``print``(``"_get_glm_style_input"``) ``print``(f``"the history is: {self.history}"``) ``history ``= [x[``"content"``] ``for x ``in self``.history] ``query ``= history.pop() ``print``(f``"the message is: {query}"``) ``return history, query ``def get_answer_at_once(``self``): ``print``(``"get_answer_at_once"``) ``history,query ``= self``._get_glm_style_input() ``messages ``= [] ``messages.append({``'role'``: ``'user'``, ``'content'``: query}) ``now ``= datetime.now() ``print``(``"get_answer_at_once start"``+``"++++++++"``+ now.strftime(``"%Y-%m-%d %H:%M:%S"``)) ``response ``= CHATGLM_MODEL.chat( ``CHATGLM_TOKENIZER, messages) ``now ``= datetime.now() ``print``(``"get_answer_at_once end"``+``"++++++++"``+ now.strftime(``"%Y-%m-%d %H:%M:%S"``)) ``print``(f``"the response is: {response}"``) ``return response, ``len``(response) ``def get_answer_stream_iter(``self``): ``history,query ``= self``._get_glm_style_input() ``messages ``= [] ``messages.append({``'role'``: ``'user'``, ``'content'``: query}) ``result ``= "" ``now ``= datetime.now() ``print``(``"get_answer_stream_iter start"``+``"++++++++"``+ now.strftime(``"%Y-%m-%d %H:%M:%S"``)) ``for response ``in CHATGLM_MODEL.chat( ``CHATGLM_TOKENIZER, ``messages ``): ``print``(f``"the response is: {response}"``) ``result ``+``= response ``yield result ``now ``= datetime.now() ``print``(``"get_answer_stream_iter end"``+``"++++++++"``+ now.strftime(``"%Y-%m-%d %H:%M:%S"``)) |

  5. 答案回调开关控制get_answer_at_once、get_answer_stream_iter方法调用选择

  6. 执行效果

相关推荐
程序员爱钓鱼12 分钟前
Python编程实战 · 基础入门篇 | 什么是Python
后端·python
程序猿小D13 分钟前
【完整源码+数据集+部署教程】遥感图像道路检测分割系统源码和数据集:改进yolo11-CARAFE
python·yolo·计算机视觉·目标跟踪·数据集·yolo11·遥感图像道路检测分割系统
zy_destiny20 分钟前
【工业场景】用YOLOv8实现人员打电话识别
人工智能·python·深度学习·yolo·机器学习·计算机视觉·目标跟踪
FreeBuf_21 分钟前
Happy DOM曝CVSS 9.4严重RCE漏洞,PoC已公开(CVE-2025-61927)
java·c语言·c++·python·php
C嘎嘎嵌入式开发32 分钟前
(10)100天python从入门到拿捏《Python中的数据结构与自定义数据结构》
数据结构·python·算法
zzZ656534 分钟前
PyTorch 实现 MNIST 手写数字识别全流程
pytorch·深度学习
程序员杰哥34 分钟前
Pytest与Unittest测试框架对比
自动化测试·软件测试·python·测试工具·测试用例·excel·pytest
Mr.Winter`1 小时前
深度强化学习 | 基于SAC算法的动态避障(ROS C++仿真)
人工智能·深度学习·神经网络·机器人·自动驾驶·ros·具身智能
wxin_VXbishe1 小时前
基于SpringBoot的天天商城管理系统的设计与现-计算机毕业设计源码79506
java·c++·spring boot·python·spring·django·php
睿思达DBA_WGX1 小时前
使用 python-docx 库操作 word 文档(3):读取word文档的内容
python·word