c++图论基础(1)

目录

无向图

无向图度

无向图性质

有向图

有向图度

有向图性质

图的分类:

稀疏图:

稠密图:

零图:

有向完全图:

无向完全图:

度序列:


图是由顶点集合(简称点集)和顶点间的边(简称边集)组成的数据结构,通常用G(V,E)表示

用G=(V,E);表示一个图结构 V是点集,E是边集

有向边------>有向图 无向边------>无向图

无向图

点集V(G)={1,2,3,4,5,6},边集E(G)={(1,2),{1,5},{2,3},{2,6},{5,6}}

无向图度

每个顶点的边数,如顶点1,度为2

无向图性质

顶点的度数总和为边数的两倍,因为对于同一条无向边,它会是两个顶点的度

有向图

点集V(G)={1,2,3,4,5,6},边集E(G)={(1,2),{2,3},{2,6},(6,5),{1,5}}

对于每一条边,称其为从u到v的一条有向边,u是有向边的起点,v是终点,注意在有向图中,(u,v)和(v,u)是不同的两条有向边

有向图度

入度:以该顶点为终点的有向边

出度:以该顶点为起点的有向边

如顶点1,入度0,出度2

有向图性质

所有入度等于所有出度

图的分类:

稀疏图:

边数少的叫稀疏图

稠密图:

边数多的叫稠密图

零图:

边数为空的是零图

有向完全图:

任意顶点间有两条边(u,v)和(v,u)相连

n个顶点n*2条边

无向完全图:

任意顶点间都有一条无向边

n个顶点有n*(n-1)/2条边

度序列:

定义:

在无向图中,所有顶点的度数排成一个序列s,则称s为图G的度序列,

如abcde对应序列4,2,3,2,1。而1,2,2,3,4也是对应的度序列,每个无向图对应的度序列不是唯一的

用于判断一个序列是否可图:

相关推荐
Qter_Sean33 分钟前
自己动手写Qt Creator插件
开发语言·qt
何曾参静谧37 分钟前
「QT」文件类 之 QIODevice 输入输出设备类
开发语言·qt
爱吃生蚝的于勒2 小时前
C语言内存函数
c语言·开发语言·数据结构·c++·学习·算法
小白学大数据4 小时前
Python爬虫开发中的分析与方案制定
开发语言·c++·爬虫·python
冰芒猓5 小时前
SpringMVC数据校验、数据格式化处理、国际化设置
开发语言·maven
失落的香蕉5 小时前
C语言串讲-2之指针和结构体
java·c语言·开发语言
红中马喽5 小时前
JS学习日记(webAPI—DOM)
开发语言·前端·javascript·笔记·vscode·学习
杜杜的man5 小时前
【go从零单排】Closing Channels通道关闭、Range over Channels
开发语言·后端·golang
java小吕布6 小时前
Java中Properties的使用详解
java·开发语言·后端
versatile_zpc6 小时前
C++初阶:类和对象(上)
开发语言·c++