SpanBert学习

SpanBERT: Improving Pre-training by Representing and Predicting Spans

核心点

  1. 提出了更好的 Span Mask 方案,也再次展示了随机遮盖连续一段字要比随机遮盖掉分散字好;
  2. 通过加入 Span Boundary Objective (SBO) 训练目标,增强了 BERT 的性能,特别在一些与 Span 相关的任务,如抽取式问答;
  3. 用实验获得了和 XLNet 类似的结果,发现不加入 Next Sentence Prediction (NSP) 任务,直接用连续一长句训练效果更好

整体结构

1.Span Masking,SM。根据集合分布,随机选择一段span的长度,之后根据均匀分布随机选择这一段的起始位置,然后按照长度进行遮盖。使用几何分布取p=0.2,最大长度为10,通过采样,平均遮盖长度为3.8个词的长度。

2.SBO span boundary objective ,希望被遮盖span边界的词向量,能学习到span的内容。再训练时,取span前后边界的两个词,用这两个词向量加上span中被遮盖词的位置向量,预测原词。

将词向量和位置向量拼接起来,加两层全连接。使用Gelu函数,并使用正则化。

最后预测span中原值时计算新损失,即SBO目标的损失。将该损失与BERT的MLM损失加起来,一起训练模型。

3.NSP ,Next Sentence Prediction任务,SPanBert没有用NSP,使用Single-Sequence Traing。不加入NSP任务判断是否两句是上下句,直接用一句来训练。

训练细节

  1. 训练时用了 Dynamic Masking 而不是像 BERT 在预处理时做 Mask;
  2. 取消 BERT 中随机采样短句的策略
  3. 还有对 Adam 优化器中一些参数改变。

学习自 SpanBert:对 Bert 预训练的一次深度探索 - 知乎

相关推荐
牛奶咖啡1331 分钟前
学习设计模式《十二》——命令模式
学习·设计模式·命令模式·队列请求·宏命令·可撤销恢复操作·参数化配置
余厌厌厌39 分钟前
go语言学习 第9章:映射(Map)
服务器·学习·golang
委婉待续40 分钟前
Qt的学习(一)
开发语言·qt·学习
哆啦A梦的口袋呀1 小时前
基于Python学习《Head First设计模式》第七章 适配器和外观模式
python·学习·设计模式
恰薯条的屑海鸥1 小时前
零基础在实践中学习网络安全-皮卡丘靶场(第十期-Over Permission 模块)
学习·安全·web安全·渗透测试·网络安全学习
东京老树根2 小时前
SAP学习笔记 - 开发27 - 前端Fiori开发 Routing and Navigation(路由和导航)
笔记·学习
阿阳微客8 小时前
Steam 搬砖项目深度拆解:从抵触到真香的转型之路
前端·笔记·学习·游戏
Chef_Chen13 小时前
从0开始学习R语言--Day18--分类变量关联性检验
学习
键盘敲没电13 小时前
【IOS】GCD学习
学习·ios·objective-c·xcode
海的诗篇_14 小时前
前端开发面试题总结-JavaScript篇(一)
开发语言·前端·javascript·学习·面试