SpanBert学习

SpanBERT: Improving Pre-training by Representing and Predicting Spans

核心点

  1. 提出了更好的 Span Mask 方案,也再次展示了随机遮盖连续一段字要比随机遮盖掉分散字好;
  2. 通过加入 Span Boundary Objective (SBO) 训练目标,增强了 BERT 的性能,特别在一些与 Span 相关的任务,如抽取式问答;
  3. 用实验获得了和 XLNet 类似的结果,发现不加入 Next Sentence Prediction (NSP) 任务,直接用连续一长句训练效果更好

整体结构

1.Span Masking,SM。根据集合分布,随机选择一段span的长度,之后根据均匀分布随机选择这一段的起始位置,然后按照长度进行遮盖。使用几何分布取p=0.2,最大长度为10,通过采样,平均遮盖长度为3.8个词的长度。

2.SBO span boundary objective ,希望被遮盖span边界的词向量,能学习到span的内容。再训练时,取span前后边界的两个词,用这两个词向量加上span中被遮盖词的位置向量,预测原词。

将词向量和位置向量拼接起来,加两层全连接。使用Gelu函数,并使用正则化。

最后预测span中原值时计算新损失,即SBO目标的损失。将该损失与BERT的MLM损失加起来,一起训练模型。

3.NSP ,Next Sentence Prediction任务,SPanBert没有用NSP,使用Single-Sequence Traing。不加入NSP任务判断是否两句是上下句,直接用一句来训练。

训练细节

  1. 训练时用了 Dynamic Masking 而不是像 BERT 在预处理时做 Mask;
  2. 取消 BERT 中随机采样短句的策略
  3. 还有对 Adam 优化器中一些参数改变。

学习自 SpanBert:对 Bert 预训练的一次深度探索 - 知乎

相关推荐
容器( ु⁎ᴗ_ᴗ⁎)ु.。oO3 小时前
Magentic-ui 学习
学习
_李小白3 小时前
【OPENGL ES 3.0 学习笔记】延伸阅读:VAO与VBO
笔记·学习·elasticsearch
微露清风4 小时前
系统性学习C++-第九讲-list类
c++·学习·list
海边夕阳20065 小时前
【每天一个AI小知识】:什么是零样本学习?
人工智能·经验分享·学习
Thexhy6 小时前
在 CentOS 7 的 Linux 系统中配置 NFS
linux·运维·学习·centos
CodeLongBear7 小时前
计算机网络学习笔记 | 传输层核心知识点总结(DAY03,匠心制作)
笔记·学习·计算机网络
晓北斗NorSnow7 小时前
机器学习核心算法与学习资源解析
学习·算法·机器学习
wdfk_prog8 小时前
[Linux]学习笔记系列 -- [kernel][time]tick
linux·笔记·学习
我命由我123459 小时前
Photoshop - Photoshop 工具栏(22)单行选框工具
学习·ui·职场和发展·求职招聘·职场发展·学习方法·photoshop
User_芊芊君子10 小时前
【成长纪实】我的鸿蒙成长之路:从“小白”到独立开发,带你走进鸿蒙的世界
学习·华为·harmonyos·鸿蒙开发