SpanBert学习

SpanBERT: Improving Pre-training by Representing and Predicting Spans

核心点

  1. 提出了更好的 Span Mask 方案,也再次展示了随机遮盖连续一段字要比随机遮盖掉分散字好;
  2. 通过加入 Span Boundary Objective (SBO) 训练目标,增强了 BERT 的性能,特别在一些与 Span 相关的任务,如抽取式问答;
  3. 用实验获得了和 XLNet 类似的结果,发现不加入 Next Sentence Prediction (NSP) 任务,直接用连续一长句训练效果更好

整体结构

1.Span Masking,SM。根据集合分布,随机选择一段span的长度,之后根据均匀分布随机选择这一段的起始位置,然后按照长度进行遮盖。使用几何分布取p=0.2,最大长度为10,通过采样,平均遮盖长度为3.8个词的长度。

2.SBO span boundary objective ,希望被遮盖span边界的词向量,能学习到span的内容。再训练时,取span前后边界的两个词,用这两个词向量加上span中被遮盖词的位置向量,预测原词。

将词向量和位置向量拼接起来,加两层全连接。使用Gelu函数,并使用正则化。

最后预测span中原值时计算新损失,即SBO目标的损失。将该损失与BERT的MLM损失加起来,一起训练模型。

3.NSP ,Next Sentence Prediction任务,SPanBert没有用NSP,使用Single-Sequence Traing。不加入NSP任务判断是否两句是上下句,直接用一句来训练。

训练细节

  1. 训练时用了 Dynamic Masking 而不是像 BERT 在预处理时做 Mask;
  2. 取消 BERT 中随机采样短句的策略
  3. 还有对 Adam 优化器中一些参数改变。

学习自 SpanBert:对 Bert 预训练的一次深度探索 - 知乎

相关推荐
虾球xz23 分钟前
CppCon 2018 学习:EFFECTIVE REPLACEMENT OF DYNAMIC POLYMORPHISM WITH std::variant
开发语言·c++·学习
Chef_Chen24 分钟前
从0开始学习R语言--Day38--辛普森多样性指数
学习
Allen_LVyingbo27 分钟前
Python常用医疗AI库以及案例解析(2025年版、上)
开发语言·人工智能·python·学习·健康医疗
DKPT35 分钟前
Java组合模式实现方式与测试方法
java·笔记·学习·设计模式·组合模式
菜菜why3 小时前
MSPM0G3507学习笔记(一) 重置版:适配逐飞库的ti板环境配置
笔记·学习·电赛·嵌入式软件·mspm0
夜阑卧听风吹雨,铁马冰河入梦来3 小时前
Spring AI 阿里巴巴学习
人工智能·学习·spring
板栗焖小鸡4 小时前
STM32-PWM驱动无源蜂鸣器
stm32·学习
开开心心就好4 小时前
批量PDF转换工具,一键转换Word Excel
开发语言·前端·学习·pdf·电脑·word·excel
Code季风4 小时前
Gin 中间件详解与实践
学习·中间件·golang·go·gin
sealaugh3212 小时前
aws(学习笔记第四十八课) appsync-graphql-dynamodb
笔记·学习·aws