2398.预算内最多的机器人数目

我第一个手搓的hard的单调队列题目......灵神yyds

思路解析:

我做的时候感觉这个题目有点歧义,我以为他的连续运行是时间上连续,所以我开始写的代码是选择最多的子序列(可以不连续),使得不超过budget,这个求最多子序列的代码会在最后给出,不保证完全正确(因为没有太多测试点),但是逻辑上是没问题的,可以作为思路看看.

下面说说这个 要求连续的子序列 的个数最大值怎么求解

首先数据量5*1e4最多是O(nlogn)

注意到每次right(子序列的右边界)加一之后,左边界都可能不变或者回缩 ,所以我们可以使用滑动窗口的思想,那么因为max(chargeTimes)比较难求,耗时较长,所以我们可以使用单调队列来维护最大值,来实现O(1)时间内取出当前最大chargeTimes, **(by the way, 我们也可以使用稀疏表来实现O(1),但是建表的过程是O(nlogn)的,不如单调队列,感兴趣的童鞋可以试试),**而对于sum(runningCosts),我们只需要一个sums记录一下即可,至于数目,我们可以使用一个cur表示当前的数量,使用ans=max(ans,cur)更新即可.

下面具体说一说单调队列的维护:

首先我们需要让单调队列来维护当前的最大值,也就是遇到比队尾小的直接加入,遇到比队尾大的,把队尾弹出再加入. 至于相等的元素可以直接加入,也可以把和它相等的元素都弹出去之后,再加入.这是因为我们不关注最大值的个数,只关注最大值,就算当前队列里面最大值的个数不对,但是他依然能够成功维护当前窗口最大值,这是因为我们当前的窗口是 [left, i],只有left等于dq.front()才会pop_front().

之后我们判断当前区间的[left, i]是否再预算里面, yes-> 更新ans, no->说明左边界要右移,但是我们每轮循环至多只用移动一位(因为 i 每次也只是加一),再更新sum,如果left等于dq.front(),那么说明当前front不能用了,pop_front.

by the way,这也是单调队列的第二种模板,也即使用left和i表示当前区间,利用滑动窗口的特点,每次左边界不变或者收缩,不变的时候更新ans,收缩的时候判断当前队头还能不能使用

代码如下

class Solution {
public: 
    int maximumRobots(vector<int>& chargeTimes, vector<int>& runningCosts, long long budget) {
        int len=chargeTimes.size();
        deque<int> dq;int ans=0,left=0; long long sum=0;
        for(int i=0;i<len;i++){
            while(dq.size() && chargeTimes[i]>=chargeTimes[dq.back()]){
                dq.pop_back();
            }
            dq.push_back(i);
            sum+=runningCosts[i];
            if(chargeTimes[dq.front()]+(i-left+1)*sum <= budget){
                ans=max(ans,i-left+1);
            }else{ 
                sum-=runningCosts[left];
                if(left==dq.front()) dq.pop_front();
                left++;
            }
        }
        return ans;
    }
};

那么如果我们要求的是 不连续的最长子序列呢, 那么首先我们需要按照runningcosts来做一个升序排序,这样我们如果想要得到更长的子序列,就需要pop出去当前chargeTimes最大的元素,这样才有可能得到一个更长的序列,代码如下:

而且注意这个时候在单调队列中,新元素如果和队尾相等,那么就应该加入进去,而不能pop_back()掉相等的元素了,因为这个时候用的就不是[left, i]的模板了,就没有if(left==dq.front())来保障最大值的安全了,每次不满足条件我们都是pop_front(),所以最大值的个数同样重要

class Solution {
public: 
//我现在的这个做法是求的是不连续的最大
    int maximumRobots(vector<int>& chargeTimes, vector<int>& runningCosts, long long budget) {
        int len=chargeTimes.size();
        vector<int> index;
        for(int i=0;i<len;i++) index.push_back(i);
        sort(index.begin(),index.end(),[&](const int a,const int b){
            if(runningCosts[a]!=runningCosts[b]) return runningCosts[a]<runningCosts[b];
            else return chargeTimes[a]<chargeTimes[b];
        });
        deque<int> dq;int ans=0,cur=0; long long sum=0;
        for(int i=0;i<len;i++){
            int idx=index[i];
            while(dq.size() && chargeTimes[idx]>chargeTimes[dq.back()]){
                dq.pop_back();
            }
            dq.push_back(idx);
            sum+=runningCosts[idx];
            if(chargeTimes[dq.front()]+(cur+1)*sum < budget){
                cur++;
                ans=max(ans,cur);
            }else{//
                sum-=runningCosts[dq.front()];
                dq.pop_front();
                cur--;
            }
        }
        return ans;
    }
};
相关推荐
卡布叻_周深7 个月前
后缀数组 学习笔记
字符串·双指针·单调栈·并查集·st表·单调队列·后缀数组·分块与莫队
爱跑步的程序员~7 个月前
1438. 绝对差不超过限制的最长连续子数组
leetcode·单调队列
钰爱&8 个月前
【单调队列】滑动窗口与子矩阵
数据结构·c++·算法·蓝桥杯·单调队列
麦田里的小白羊8 个月前
最大子序列(蓝桥杯,acwing,单调队列)
数据结构·c++·算法·蓝桥杯·单调队列