opencv动态识别人脸

复制代码
import cv2
import os
import numpy as np



def take_faces():
    while True:
        key = input('请输入文件夹的名字,姓名拼音的缩写,如果输入Q,程序退出!')
        if key == 'Q':
            break
        # 在faces_dynamic下面创建子文件夹
        os.makedirs('./faces_dymamic/%s' % (key), exist_ok=True)
        take_photo(key)

def load_data():
    listdir = os.listdir('./faces_dymamic')
    #列表生成式
    names = [d for d in listdir if not d.startswith('.')]
    faces  = []
    target = [i for i in range(len(names))]*10
    for dir in names:
        for i in range(1,11):
            gray = cv2.imread('./faces_dymamic/%s/%d.jpg'% (dir,i)) #三维图片
            gray_ = gray[:, :, 0] #二维数组
            faces.append(gray_)
    faces = np.asarray(faces)
    target = np.asarray(target)
    target.sort()  # 排序
    return faces,target,names


def dynamic_recognizer_face(face_recognizer,names):
    cap = cv2.VideoCapture(0)
    #人脸检测
    face_detector = cv2.CascadeClassifier('./haarcascade_frontalface_default.xml')
    while True:
        flag,frame = cap.read()
        if not flag:
            break
        gray = cv2.cvtColor(frame, code=cv2.COLOR_BGR2GRAY)
        faces = face_detector.detectMultiScale(gray,minNeighbors=5)
        for x,y,w,h in faces:
            face = gray[y:y + h, x:x + w]
            face = cv2.resize(face, dsize=(64, 64))
            y_,confidence = face_recognizer.predict(face)
            label = names[y_]
            print('这个人是:%s.置信度:%0.1f'%(label,confidence))

            cv2.rectangle(frame,pt1=(x,y),pt2=(x+w,y+h),color=[0,0,255],thickness=2)
            cv2.putText(frame,text=label,
                        org=(x,y-10),
                        fontFace=cv2.FONT_HERSHEY_SIMPLEX,
                        fontScale=1.5,
                        color=[0,0,255],thickness=2)
        cv2.imshow('face',frame)
        key = cv2.waitKey(1000//24)
        if key == ord('q'):
            break
    cv2.destroyAllWindows()
    cap.release()

if __name__ == '__main__':
   
    #2、加载数据,返回目标值
    faces,target,names  = load_data()
    #print(faces.shape,target.shape)
    #3、加载人脸识别算法
    #face_recognizer = cv2.face.EigenFaceRecognizer_create()
    #face_recognizer = cv2.face.FisherFaceRecognizer_create()
    face_recognizer = cv2.face.LBPHFaceRecognizer_create()
    #4、算法训练,找到目标值之间的规律
    face_recognizer.train(faces,target)
    #5、动态加载数据
    dynamic_recognizer_face(face_recognizer,names )
相关推荐
CodeCraft Studio32 分钟前
CAD文件处理控件Aspose.CAD教程:使用 Python 将绘图转换为 Photoshop
python·photoshop·cad·aspose·aspose.cad
Python×CATIA工业智造2 小时前
Frida RPC高级应用:动态模拟执行Android so文件实战指南
开发语言·python·pycharm
千宇宙航3 小时前
闲庭信步使用SV搭建图像测试平台:第三十一课——基于神经网络的手写数字识别
图像处理·人工智能·深度学习·神经网络·计算机视觉·fpga开发
onceco3 小时前
领域LLM九讲——第5讲 为什么选择OpenManus而不是QwenAgent(附LLM免费api邀请码)
人工智能·python·深度学习·语言模型·自然语言处理·自动化
狐凄4 小时前
Python实例题:基于 Python 的简单聊天机器人
开发语言·python
悦悦子a啊5 小时前
Python之--基本知识
开发语言·前端·python
whoarethenext6 小时前
使用 C++/OpenCV 和 MFCC 构建双重认证智能门禁系统
开发语言·c++·opencv·mfcc
jndingxin6 小时前
OpenCV CUDA模块设备层-----高效地计算两个 uint 类型值的带权重平均值
人工智能·opencv·计算机视觉
Sweet锦6 小时前
零基础保姆级本地化部署文心大模型4.5开源系列
人工智能·语言模型·文心一言
笑稀了的野生俊6 小时前
在服务器中下载 HuggingFace 模型:终极指南
linux·服务器·python·bash·gpu算力