import cv2
import os
import numpy as np
def take_faces():
while True:
key = input('请输入文件夹的名字,姓名拼音的缩写,如果输入Q,程序退出!')
if key == 'Q':
break
# 在faces_dynamic下面创建子文件夹
os.makedirs('./faces_dymamic/%s' % (key), exist_ok=True)
take_photo(key)
def load_data():
listdir = os.listdir('./faces_dymamic')
#列表生成式
names = [d for d in listdir if not d.startswith('.')]
faces = []
target = [i for i in range(len(names))]*10
for dir in names:
for i in range(1,11):
gray = cv2.imread('./faces_dymamic/%s/%d.jpg'% (dir,i)) #三维图片
gray_ = gray[:, :, 0] #二维数组
faces.append(gray_)
faces = np.asarray(faces)
target = np.asarray(target)
target.sort() # 排序
return faces,target,names
def dynamic_recognizer_face(face_recognizer,names):
cap = cv2.VideoCapture(0)
#人脸检测
face_detector = cv2.CascadeClassifier('./haarcascade_frontalface_default.xml')
while True:
flag,frame = cap.read()
if not flag:
break
gray = cv2.cvtColor(frame, code=cv2.COLOR_BGR2GRAY)
faces = face_detector.detectMultiScale(gray,minNeighbors=5)
for x,y,w,h in faces:
face = gray[y:y + h, x:x + w]
face = cv2.resize(face, dsize=(64, 64))
y_,confidence = face_recognizer.predict(face)
label = names[y_]
print('这个人是:%s.置信度:%0.1f'%(label,confidence))
cv2.rectangle(frame,pt1=(x,y),pt2=(x+w,y+h),color=[0,0,255],thickness=2)
cv2.putText(frame,text=label,
org=(x,y-10),
fontFace=cv2.FONT_HERSHEY_SIMPLEX,
fontScale=1.5,
color=[0,0,255],thickness=2)
cv2.imshow('face',frame)
key = cv2.waitKey(1000//24)
if key == ord('q'):
break
cv2.destroyAllWindows()
cap.release()
if __name__ == '__main__':
#2、加载数据,返回目标值
faces,target,names = load_data()
#print(faces.shape,target.shape)
#3、加载人脸识别算法
#face_recognizer = cv2.face.EigenFaceRecognizer_create()
#face_recognizer = cv2.face.FisherFaceRecognizer_create()
face_recognizer = cv2.face.LBPHFaceRecognizer_create()
#4、算法训练,找到目标值之间的规律
face_recognizer.train(faces,target)
#5、动态加载数据
dynamic_recognizer_face(face_recognizer,names )
opencv动态识别人脸
weixin_462901972024-04-28 14:49
相关推荐
数据科学作家1 天前
学数据分析必囤!数据分析必看!清华社9本书覆盖Stata/SPSS/Python全阶段学习路径HXQ_晴天1 天前
CASToR 生成的文件进行转换CV缝合救星1 天前
【Arxiv 2025 预发行论文】重磅突破!STAR-DSSA 模块横空出世:显著性+拓扑双重加持,小目标、大场景统统拿下!java1234_小锋1 天前
Scikit-learn Python机器学习 - 特征预处理 - 标准化 (Standardization):StandardScalerPython×CATIA工业智造1 天前
Python带状态生成器完全指南:从基础到高并发系统设计向qian看_-_1 天前
Linux 使用pip报错(error: externally-managed-environment )解决方案Nicole-----1 天前
Python - Union联合类型注解TDengine (老段)1 天前
从 ETL 到 Agentic AI:工业数据管理变革与 TDengine IDMP 的治理之道蓝桉8021 天前
如何进行神经网络的模型训练(视频代码中的知识点记录)星期天要睡觉1 天前
深度学习——数据增强(Data Augmentation)