揭密 scaling laws

Scaling laws

OpenAI 在其早期的关于 scaling laws 的论文 [1] 中提出了基础理论,但该文缺乏一些具体的求解过程,且未能在更大规模的模型上进行验证。与此同时,后续研究,例如 DeepMind 的 ChinChilla [2] 还提出了不同的结论。

论文题目:

Unraveling the Mystery of Scaling Laws: Part I

论文地址:

https://arxiv.org/abs/2403.06563

论文作者:

Hui Su, Zhi Tian, Xiaoyu Shen, Xunliang Cai

论文探究了原始 scaling laws 研究所遗漏的细节,复现一套可靠和精确的 scaling laws 公式,揭示了 ChinChilla 研究结果与 OpenAI 理论不一致的根本原因(数据分布和长下文长度不同)。

超参

例如批处理大小(batch size)、学习率(learning rate)和学习率调度器(learning rate scheduler),在模型的收敛速度上起着显著作用。然而,只要这些参数设置在一个合理的范围之内,并结合充足的训练步数与大量数据进行训练,它们对于最终的收敛损失(loss)值的影响可以忽略不计。

batch size

基于 loss 值确定一个关键的批处理大小(critical batch size),以实现时间和计算成本的相对最优。相较于使用无限大的 batch size,需要双倍的训练步数来达到同样的 loss 值。

上下文长度、tokenization、数据分布和模型架构

上下文长度、tokenization、数据分布和模型架构本身,对于 scaling laws 公式中的系数有着显著的影响。然而,这些因素并不改变 scaling laws 的基本形式。这也解释了为何 ChinChilla 研究得出了不同的结论,因为它们在上下文长度和数据集方面有所不同。

power-law

只要 lr 设置得当,训练步数、batch size 以及模型规模与 loss 之间存在着一种精确且可预测的幂律(power-law)关系。

Ref

相关推荐
soldierluo3 小时前
大模型的召回率
人工智能·机器学习
冰西瓜6005 小时前
从项目入手机器学习——(三)数据预处理(下)自动编码器
人工智能·机器学习
ldccorpora6 小时前
GALE Phase 1 Chinese Broadcast News Parallel Text - Part 1数据集介绍,官网编号LDC2007T23
人工智能·深度学习·算法·机器学习·自然语言处理
Hcoco_me8 小时前
大模型面试题75:讲解一下GRPO的数据回放
人工智能·深度学习·算法·机器学习·vllm
高洁019 小时前
AIGC技术与进展(1)
深度学习·算法·机器学习·transformer·知识图谱
算法狗29 小时前
大模型面试题:有以下哪些方式可以在 prompt 中插入指令?
人工智能·深度学习·机器学习·语言模型·面试题
嘉嘉嘉71710 小时前
【day 52】神经网络调参指南
python·深度学习·机器学习
gihigo199811 小时前
竞争性自适应重加权算法
人工智能·算法·机器学习
renhongxia111 小时前
大型语言模型性能预测器:学习何时在混合人机-人工智能管理系统中升级
人工智能·深度学习·学习·机器学习·语言模型·自然语言处理
田井中律.12 小时前
知识图谱(四)之LSTM+CRF
人工智能·机器学习