揭密 scaling laws

Scaling laws

OpenAI 在其早期的关于 scaling laws 的论文 [1] 中提出了基础理论,但该文缺乏一些具体的求解过程,且未能在更大规模的模型上进行验证。与此同时,后续研究,例如 DeepMind 的 ChinChilla [2] 还提出了不同的结论。

论文题目:

Unraveling the Mystery of Scaling Laws: Part I

论文地址:

https://arxiv.org/abs/2403.06563

论文作者:

Hui Su, Zhi Tian, Xiaoyu Shen, Xunliang Cai

论文探究了原始 scaling laws 研究所遗漏的细节,复现一套可靠和精确的 scaling laws 公式,揭示了 ChinChilla 研究结果与 OpenAI 理论不一致的根本原因(数据分布和长下文长度不同)。

超参

例如批处理大小(batch size)、学习率(learning rate)和学习率调度器(learning rate scheduler),在模型的收敛速度上起着显著作用。然而,只要这些参数设置在一个合理的范围之内,并结合充足的训练步数与大量数据进行训练,它们对于最终的收敛损失(loss)值的影响可以忽略不计。

batch size

基于 loss 值确定一个关键的批处理大小(critical batch size),以实现时间和计算成本的相对最优。相较于使用无限大的 batch size,需要双倍的训练步数来达到同样的 loss 值。

上下文长度、tokenization、数据分布和模型架构

上下文长度、tokenization、数据分布和模型架构本身,对于 scaling laws 公式中的系数有着显著的影响。然而,这些因素并不改变 scaling laws 的基本形式。这也解释了为何 ChinChilla 研究得出了不同的结论,因为它们在上下文长度和数据集方面有所不同。

power-law

只要 lr 设置得当,训练步数、batch size 以及模型规模与 loss 之间存在着一种精确且可预测的幂律(power-law)关系。

Ref

相关推荐
AI_56786 小时前
AWS EC2新手入门:6步带你从零启动实例
大数据·数据库·人工智能·机器学习·aws
小鸡吃米…8 小时前
机器学习的商业化变现
人工智能·机器学习
木非哲11 小时前
机器学习--随机森林--从一棵树的直觉到一片林的哲学
人工智能·随机森林·机器学习
A尘埃12 小时前
保险公司车险理赔欺诈检测(随机森林)
算法·随机森林·机器学习
小瑞瑞acd17 小时前
【小瑞瑞精讲】卷积神经网络(CNN):从入门到精通,计算机如何“看”懂世界?
人工智能·python·深度学习·神经网络·机器学习
民乐团扒谱机17 小时前
【微实验】机器学习之集成学习 GBDT和XGBoost 附 matlab仿真代码 复制即可运行
人工智能·机器学习·matlab·集成学习·xgboost·gbdt·梯度提升树
Σίσυφος190018 小时前
PCL法向量估计 之 RANSAC 平面估计法向量
算法·机器学习·平面
rcc862818 小时前
AI应用核心技能:从入门到精通的实战指南
人工智能·机器学习
霖大侠18 小时前
【无标题】
人工智能·深度学习·机器学习
B站_计算机毕业设计之家19 小时前
猫眼电影数据可视化与智能分析平台 | Python Flask框架 Echarts 推荐算法 爬虫 大数据 毕业设计源码
python·机器学习·信息可视化·flask·毕业设计·echarts·推荐算法