揭密 scaling laws

Scaling laws

OpenAI 在其早期的关于 scaling laws 的论文 [1] 中提出了基础理论,但该文缺乏一些具体的求解过程,且未能在更大规模的模型上进行验证。与此同时,后续研究,例如 DeepMind 的 ChinChilla [2] 还提出了不同的结论。

论文题目:

Unraveling the Mystery of Scaling Laws: Part I

论文地址:

https://arxiv.org/abs/2403.06563

论文作者:

Hui Su, Zhi Tian, Xiaoyu Shen, Xunliang Cai

论文探究了原始 scaling laws 研究所遗漏的细节,复现一套可靠和精确的 scaling laws 公式,揭示了 ChinChilla 研究结果与 OpenAI 理论不一致的根本原因(数据分布和长下文长度不同)。

超参

例如批处理大小(batch size)、学习率(learning rate)和学习率调度器(learning rate scheduler),在模型的收敛速度上起着显著作用。然而,只要这些参数设置在一个合理的范围之内,并结合充足的训练步数与大量数据进行训练,它们对于最终的收敛损失(loss)值的影响可以忽略不计。

batch size

基于 loss 值确定一个关键的批处理大小(critical batch size),以实现时间和计算成本的相对最优。相较于使用无限大的 batch size,需要双倍的训练步数来达到同样的 loss 值。

上下文长度、tokenization、数据分布和模型架构

上下文长度、tokenization、数据分布和模型架构本身,对于 scaling laws 公式中的系数有着显著的影响。然而,这些因素并不改变 scaling laws 的基本形式。这也解释了为何 ChinChilla 研究得出了不同的结论,因为它们在上下文长度和数据集方面有所不同。

power-law

只要 lr 设置得当,训练步数、batch size 以及模型规模与 loss 之间存在着一种精确且可预测的幂律(power-law)关系。

Ref

相关推荐
人工干智能10 分钟前
科普:One-Class SVM和SVDD
人工智能·机器学习·支持向量机
MPCTHU25 分钟前
预测分析(三):基于机器学习的分类预测
人工智能·机器学习·分类
_一条咸鱼_1 小时前
LangChain 入门到精通
机器学习
3DVisionary1 小时前
3D-DIC与机器学习协同模拟材料应力-应变本构行为研究
人工智能·机器学习·3d·3d-dic技术 机器学习·应力-应变本构行为·卷积神经网络(ecnn)·数字图像相关法(dic)
神经星星1 小时前
无需预对齐即可消除批次效应,东京大学团队开发深度学习框架STAIG,揭示肿瘤微环境中的详细基因信息
人工智能·深度学习·机器学习
神经星星1 小时前
【vLLM 学习】调试技巧
人工智能·机器学习·编程语言
呵呵哒( ̄▽ ̄)"1 小时前
线性代数:同解(1)
python·线性代数·机器学习
SweetCode1 小时前
裴蜀定理:整数解的奥秘
数据结构·python·线性代数·算法·机器学习
databook2 小时前
不平衡样本数据的救星:数据再分配策略
python·机器学习·scikit-learn
补三补四2 小时前
机器学习-聚类分析算法
人工智能·深度学习·算法·机器学习