代码+视频,R语言绘制生存分析模型的时间依赖(相关)性roc曲线和时间依赖(相关)性cindex曲线

ROC曲线分析是用于评估一个因素预测能力的手段,是可以用于连续型变量分组的方法。在生存分析中,疾病状态和因素取值均会随时间发生变化。而标准的ROC曲线分析将个体的疾病状态和因素取值视作固定值,未将时间因素考虑在分析之中。在这种情况下,使用时间依赖性ROC无疑是更好的选择

今天咱们视频来演示一下时间依赖ROC曲线绘制

R语言绘制生存分析模型的时间依赖(相关)性roc曲线和时间依赖(相关)性cindex曲线

代码

r 复制代码
library(survival)
library("survminer")
library(foreign)
#公众号:零基础说科研
#公众号回复:乳腺癌,可以获得这个数据
bc <- read.spss("E:/r/test/Breast cancer survival agec.sav",
                use.value.labels=F, to.data.frame=T)
bc <- na.omit(bc)
names(bc)
##分类变量转成因子
bc$histgrad<-as.factor(bc$histgrad)
bc$er<-as.factor(bc$er)
bc$pr<-as.factor(bc$pr)
bc$ln_yesno<-as.factor(bc$ln_yesno)

f1<-coxph(Surv(time,status)~er+histgrad+pr+age+ln_yesno,bc,x=TRUE,y=TRUE)
f2<-coxph(Surv(time,status)~er+histgrad+ln_yesno,bc,x=TRUE,y=TRUE)
f3<-coxph(Surv(time,status)~ln_yesno,bc,x=TRUE,y=TRUE)

library(riskRegression)
A3<- riskRegression::Score(list("f1"=f1),
                           formula=Surv(time,status)~1,
                           data=bc,
                           metrics="auc",
                           null.model=F,
                           times=seq(3,132,1))
plotAUC(A3)
##########
auc<-plotAUC(A3)
ggplot()+geom_line(data=auc, aes(times,AUC),linetype=1,size=1,alpha = 0.6,colour="red")+
  geom_ribbon(data=auc, aes(times,ymin = lower, ymax = upper),alpha = 0.1,fill="red")+
  geom_hline(yintercept=1, linetype=2,size=1)+theme_classic()+ 
  labs(title = "时间相关性ROC", x="times", y="AUC")

A3<- riskRegression::Score(list("f1"=f1,"f2"=f2),
                           formula=Surv(time,status)~1,
                           data=bc,
                           metrics="AUC",
                           null.model=F,
                           times=seq(3,132,1))
plotAUC(A3)
auc<-plotAUC(A3)
ggplot()+geom_line(data=auc, aes(times,AUC,group=model,col=model))+
  geom_ribbon(data=auc, aes(times,ymin = lower, ymax = upper,fill=model),alpha = 0.1)+
  geom_hline(yintercept=1, linetype=2,size=1)+theme_classic()+ 
  labs(title = "时间相关性ROC", x="times", y="AUC")
###########
library(pec)
A1<-pec::cindex(list("f1"=f1),
                formula=Surv(time,status)~er+histgrad+pr+age+ln_yesno,
                data=bc,
                eval.times=seq(3,132,1))
plot(A1)

A1<-pec::cindex(list("f1"=f1,"f2"=f2,"f3"=f3),
                formula=Surv(time,status)~er+histgrad+pr+age+ln_yesno,
                data=bc,
                eval.times=seq(3,132,1))
plot(A1)
相关推荐
m0_7482480210 分钟前
揭开 C++ vector 底层面纱:从三指针模型到手写完整实现
开发语言·c++·算法
海盗猫鸥10 分钟前
「C++」string类(2)常用接口
开发语言·c++
yugi98783830 分钟前
基于Qt框架开发多功能视频播放器
开发语言·qt
whm277731 分钟前
Visual Basic 手工制作工具栏
开发语言·visual studio
wangqiaowq4 小时前
StarRocks安装部署测试
java·开发语言
缺点内向7 小时前
C#: 高效移动与删除Excel工作表
开发语言·c#·.net·excel
老前端的功夫8 小时前
Web应用的永生之术:PWA落地与实践深度指南
java·开发语言·前端·javascript·css·node.js
ᐇ9599 小时前
Java HashMap深度解析:数据结构、原理与实战指南
java·开发语言·数据结构
QT 小鲜肉9 小时前
【个人成长笔记】在 Linux 系统下撰写老化测试脚本以实现自动压测效果(亲测有效)
linux·开发语言·笔记·单片机·压力测试
程序员龙一9 小时前
C++之static_cast关键字
开发语言·c++·static_cast