代码+视频,R语言绘制生存分析模型的时间依赖(相关)性roc曲线和时间依赖(相关)性cindex曲线

ROC曲线分析是用于评估一个因素预测能力的手段,是可以用于连续型变量分组的方法。在生存分析中,疾病状态和因素取值均会随时间发生变化。而标准的ROC曲线分析将个体的疾病状态和因素取值视作固定值,未将时间因素考虑在分析之中。在这种情况下,使用时间依赖性ROC无疑是更好的选择

今天咱们视频来演示一下时间依赖ROC曲线绘制

R语言绘制生存分析模型的时间依赖(相关)性roc曲线和时间依赖(相关)性cindex曲线

代码

r 复制代码
library(survival)
library("survminer")
library(foreign)
#公众号:零基础说科研
#公众号回复:乳腺癌,可以获得这个数据
bc <- read.spss("E:/r/test/Breast cancer survival agec.sav",
                use.value.labels=F, to.data.frame=T)
bc <- na.omit(bc)
names(bc)
##分类变量转成因子
bc$histgrad<-as.factor(bc$histgrad)
bc$er<-as.factor(bc$er)
bc$pr<-as.factor(bc$pr)
bc$ln_yesno<-as.factor(bc$ln_yesno)

f1<-coxph(Surv(time,status)~er+histgrad+pr+age+ln_yesno,bc,x=TRUE,y=TRUE)
f2<-coxph(Surv(time,status)~er+histgrad+ln_yesno,bc,x=TRUE,y=TRUE)
f3<-coxph(Surv(time,status)~ln_yesno,bc,x=TRUE,y=TRUE)

library(riskRegression)
A3<- riskRegression::Score(list("f1"=f1),
                           formula=Surv(time,status)~1,
                           data=bc,
                           metrics="auc",
                           null.model=F,
                           times=seq(3,132,1))
plotAUC(A3)
##########
auc<-plotAUC(A3)
ggplot()+geom_line(data=auc, aes(times,AUC),linetype=1,size=1,alpha = 0.6,colour="red")+
  geom_ribbon(data=auc, aes(times,ymin = lower, ymax = upper),alpha = 0.1,fill="red")+
  geom_hline(yintercept=1, linetype=2,size=1)+theme_classic()+ 
  labs(title = "时间相关性ROC", x="times", y="AUC")

A3<- riskRegression::Score(list("f1"=f1,"f2"=f2),
                           formula=Surv(time,status)~1,
                           data=bc,
                           metrics="AUC",
                           null.model=F,
                           times=seq(3,132,1))
plotAUC(A3)
auc<-plotAUC(A3)
ggplot()+geom_line(data=auc, aes(times,AUC,group=model,col=model))+
  geom_ribbon(data=auc, aes(times,ymin = lower, ymax = upper,fill=model),alpha = 0.1)+
  geom_hline(yintercept=1, linetype=2,size=1)+theme_classic()+ 
  labs(title = "时间相关性ROC", x="times", y="AUC")
###########
library(pec)
A1<-pec::cindex(list("f1"=f1),
                formula=Surv(time,status)~er+histgrad+pr+age+ln_yesno,
                data=bc,
                eval.times=seq(3,132,1))
plot(A1)

A1<-pec::cindex(list("f1"=f1,"f2"=f2,"f3"=f3),
                formula=Surv(time,status)~er+histgrad+pr+age+ln_yesno,
                data=bc,
                eval.times=seq(3,132,1))
plot(A1)
相关推荐
Sammyyyyy1 小时前
2025年,Javascript后端应该用 Bun、Node.js 还是 Deno?
开发语言·javascript·node.js
William一直在路上2 小时前
Python数据类型转换详解:从基础到实践
开发语言·python
看到我,请让我去学习2 小时前
Qt— 布局综合项目(Splitter,Stacked,Dock)
开发语言·qt
GUET_一路向前2 小时前
【C语言防御性编程】if条件常量在前,变量在后
c语言·开发语言·if-else·防御性编程
曳渔2 小时前
UDP/TCP套接字编程简单实战指南
java·开发语言·网络·网络协议·tcp/ip·udp
三千道应用题3 小时前
WPF&C#超市管理系统(6)订单详情、顾客注册、商品销售排行查询和库存提示、LiveChat报表
开发语言·c#·wpf
hqxstudying3 小时前
JAVA项目中邮件发送功能
java·开发语言·python·邮件
咪咪渝粮3 小时前
JavaScript 中constructor 属性的指向异常问题
开发语言·javascript
最初的↘那颗心3 小时前
Java HashMap深度解析:原理、实现与最佳实践
java·开发语言·面试·hashmap·八股文
后台开发者Ethan4 小时前
Python需要了解的一些知识
开发语言·人工智能·python