visionTransformer window平台下报错

  • 错误:
clike 复制代码
KeyError: 'Transformer/encoderblock_0/MlpBlock_3/Dense_0kernel is not a file in the archive'
  • 解决方法:

修改这个函数即可,主要原因是Linux系统与window系统路径分隔符不一样导致

clike 复制代码
    def load_from(self, weights, n_block):
        ROOT = f"Transformer/encoderblock_{n_block}"
        with torch.no_grad():
            # query_weight = np2th(weights[pjoin(ROOT, ATTENTION_Q, "kernel")]).view(self.hidden_size, self.hidden_size).t()
            # key_weight = np2th(weights[pjoin(ROOT, ATTENTION_K, "kernel")]).view(self.hidden_size, self.hidden_size).t()
            # value_weight = np2th(weights[pjoin(ROOT, ATTENTION_V, "kernel")]).view(self.hidden_size, self.hidden_size).t()
            # out_weight = np2th(weights[pjoin(ROOT, ATTENTION_OUT, "kernel")]).view(self.hidden_size, self.hidden_size).t()
            query_weight = np2th(weights[(ROOT + '/' + ATTENTION_Q + "/kernel")]).view(self.hidden_size,self.hidden_size).t()
            key_weight = np2th(weights[(ROOT + '/' + ATTENTION_K + "/kernel")]).view(self.hidden_size,self.hidden_size).t()
            value_weight = np2th(weights[(ROOT + '/' + ATTENTION_V + "/kernel")]).view(self.hidden_size,self.hidden_size).t()
            out_weight = np2th(weights[(ROOT + '/' + ATTENTION_OUT + "/kernel")]).view(self.hidden_size,self.hidden_size).t()

            # query_bias = np2th(weights[pjoin(ROOT, ATTENTION_Q, "bias")]).view(-1)
            # key_bias = np2th(weights[pjoin(ROOT, ATTENTION_K, "bias")]).view(-1)
            # value_bias = np2th(weights[pjoin(ROOT, ATTENTION_V, "bias")]).view(-1)
            # out_bias = np2th(weights[pjoin(ROOT, ATTENTION_OUT, "bias")]).view(-1)
            query_bias = np2th(weights[(ROOT + '/' + ATTENTION_Q + "/bias")]).view(-1)
            key_bias = np2th(weights[(ROOT + '/' + ATTENTION_K + "/bias")]).view(-1)
            value_bias = np2th(weights[(ROOT + '/' + ATTENTION_V + "/bias")]).view(-1)
            out_bias = np2th(weights[(ROOT + '/' + ATTENTION_OUT + "/bias")]).view(-1)

            self.attn.query.weight.copy_(query_weight)
            self.attn.key.weight.copy_(key_weight)
            self.attn.value.weight.copy_(value_weight)
            self.attn.out.weight.copy_(out_weight)
            self.attn.query.bias.copy_(query_bias)
            self.attn.key.bias.copy_(key_bias)
            self.attn.value.bias.copy_(value_bias)
            self.attn.out.bias.copy_(out_bias)

            mlp_weight_0 = np2th(weights[(ROOT + '/' + FC_0 + "/kernel")]).t()
            mlp_weight_1 = np2th(weights[(ROOT + '/' + FC_1 + "/kernel")]).t()
            mlp_bias_0 = np2th(weights[(ROOT + '/' + FC_0 +"/bias")]).t()
            mlp_bias_1 = np2th(weights[(ROOT + '/' + FC_1 + "/bias")]).t()

            self.ffn.fc1.weight.copy_(mlp_weight_0)
            self.ffn.fc2.weight.copy_(mlp_weight_1)
            self.ffn.fc1.bias.copy_(mlp_bias_0)
            self.ffn.fc2.bias.copy_(mlp_bias_1)

            self.attention_norm.weight.copy_(np2th(weights[(ROOT + '/' + ATTENTION_NORM + "/scale")]))
            self.attention_norm.bias.copy_(np2th(weights[(ROOT + '/' + ATTENTION_NORM +  "/bias")]))
            self.ffn_norm.weight.copy_(np2th(weights[(ROOT + '/' + MLP_NORM + "/scale")]))
            self.ffn_norm.bias.copy_(np2th(weights[(ROOT + '/' +  MLP_NORM + "/bias")]))
相关推荐
伏小白白白1 小时前
【论文精度-2】求解车辆路径问题的神经组合优化算法:综合展望(Yubin Xiao,2025)
人工智能·算法·机器学习
应用市场1 小时前
OpenCV编程入门:从零开始的计算机视觉之旅
人工智能·opencv·计算机视觉
星域智链1 小时前
宠物智能用品:当毛孩子遇上 AI,是便利还是过度?
人工智能·科技·学习·宠物
taxunjishu2 小时前
DeviceNet 转 MODBUS TCP罗克韦尔 ControlLogix PLC 与上位机在汽车零部件涂装生产线漆膜厚度精准控制的通讯配置案例
人工智能·区块链·工业物联网·工业自动化·总线协议
说私域2 小时前
基于多模态AI技术的传统行业智能化升级路径研究——以开源AI大模型、AI智能名片与S2B2C商城小程序为例
人工智能·小程序·开源
囚生CY2 小时前
【速写】优化的深度与广度(Adam & Moun)
人工智能·python·算法
hqyjzsb2 小时前
2025年市场岗位能力重构与跨领域转型路径分析
c语言·人工智能·信息可视化·重构·媒体·改行学it·caie
爱学习的uu2 小时前
CURSOR最新使用指南及使用思路
人工智能·笔记·python·软件工程
叶凡要飞2 小时前
RTX5060Ti安装双系统ubuntu22.04各种踩坑点(黑屏,引导区修复、装驱动、server版本安装)
人工智能·python·yolo·ubuntu·机器学习·操作系统
叶庭云3 小时前
一文掌握 CodeX CLI 安装以及使用!
人工智能·openai·安装·使用教程·codex cli·编码智能体·vibe coding 终端