基于遗传优化算法的TSP问题求解matlab仿真

目录

1.程序功能描述

2.测试软件版本以及运行结果展示

3.核心程序

4.本算法原理

5.完整程序


1.程序功能描述

基于遗传优化算法的TSP问题求解,分别对四个不同的城市坐标进行路径搜索。

2.测试软件版本以及运行结果展示

MATLAB2022A版本运行

3.核心程序

........................................................................
for ij=1:Miters
    % 计算当前迭代周期种群适应度   
      %删除与交叉区域相同元素
      for j=1:Rcc
          for k=1:num
              if Xnew(i,k)==Yc(j)
                 Xnew(i,k)=0;
                  for t=1:num-k
                      temp=Xnew(i,k+t-1);
                      Xnew(i,k+t-1)=Xnew(i,k+t);
                      Xnew(i,k+t)=temp;
                  end                 
              end
          end
      end
 
      %插入交叉区域
      for j=1:Rcc
          Xnew(i,num-Rcc+j)=Yc(j);
      end
      %判断产生新路径长度是否变短
      ydt=0;
      for j=1:num-1
          ydt=ydt+mdist(Xnew(i,j),Xnew(i,j+1));
      end
      ydt=ydt+mdist(Xnew(i,1),Xnew(i,num));
      if yfit(i)>ydt
         x(i,:)=Xnew(i,:);
      end
      %进行变异操作
      c1=round(rand*(num-1))+1;    
      c2=round(rand*(num-1))+1;
      temp=Xnew(i,c1);
      Xnew(i,c1)=Xnew(i,c2);
      Xnew(i,c2)=temp;
      %判断产生新路径长度是否变短
      ydt=0;
      for j=1:num-1
          ydt=ydt+mdist(Xnew(i,j),Xnew(i,j+1));
      end
      ydt=ydt+mdist(Xnew(i,1),Xnew(i,num));
 
      if yfit(i)>ydt
         x(i,:)=Xnew(i,:);
      end
    end

    yfit1=yfit(1);
    yfit2=1;
    for i=1:Pops
       if yfit1>=yfit(i)
            yfit1=yfit(i);
            yfit2=i;
        end
    end
    idx        = yfit2;
    L_best(ij) = min(yfit);
    %当前全局最优路径
    Ygbest     = x(idx,:);     
  
    if mod(ij,10)==1
        figure(1)
        subplot(121);
        scatter(pxy(:,1),pxy(:,2));
        hold on
        plot([pxy(Ygbest(1),1),pxy(Ygbest(num),1)],[pxy(Ygbest(1),2),pxy(Ygbest(num),2)],'-mo',...
            'LineWidth',1,...
            'MarkerSize',6,...
            'MarkerEdgeColor','k',...
            'MarkerFaceColor',[0.5,0.9,0.0]);
        for ii=2:num
            plot([pxy(Ygbest(ii-1),1),pxy(Ygbest(ii),1)],[pxy(Ygbest(ii-1),2),pxy(Ygbest(ii),2)],'-mo',...
            'LineWidth',1,...
            'MarkerSize',6,...
            'MarkerEdgeColor','k',...
            'MarkerFaceColor',[0.5,0.9,0.0]);
        end
        title(['最短路线:',num2str(min(yfit))]);
        hold off
        subplot(122);
        plot(L_best,'LineWidth',2);
    end
end
45

4.本算法原理

旅行商问题(Traveling Salesman Problem, TSP)是一个经典的组合优化问题,旨在寻找最短的可能路线,使得旅行商能访问每个城市恰好一次然后返回起点。利用遗传算法(Genetic Algorithm, GA)解决TSP问题,主要通过模拟自然界的进化过程,在解空间中搜索最优解。

一、编码方式 首先需要将TSP问题转化为遗传算法可处理的形式。通常采用路径编码或顺序编码的方式,即将城市的访问顺序表示为一个染色体(个体),如对于n个城市,一个染色体可以用一个长度为n的整数数组表示 [c1, c2, ..., cn],其中 ci 表示第i个访问的城市编号(假设从1开始计数,且cn+1=c1表示回到起点)。

二、初始种群生成 随机生成一组代表不同路径的染色体构成初始种群,确保每个染色体都是一个合法的TSP解决方案,即包含所有城市且无重复。

三、适应度函数 设计适应度函数评价各个染色体的好坏,对于TSP问题,适应度函数通常是路径总距离的倒数或对数形式.

四、选择操作 根据适应度函数值对种群进行选择操作,保留适应度较高的个体进入下一代。常见的选择策略有轮盘赌选择、锦标赛选择等。

五、交叉(Crossover) 选取两个父代个体进行交叉操作,产生新的子代。针对TSP问题常用的是顺序交叉(Order Crossover, OX)或部分匹配交叉(Partially Matched Crossover, PMX)。

六、变异(Mutation) 在新生成的个体中执行变异操作,以增加种群多样性。对于TSP问题,一般采取逆序交换突变(Inversion Mutation)或swap突变.

七、 elitism(精英保留) 为了防止优秀解在进化过程中丢失,可以设置一定数量的最优个体直接复制到下一代种群中。

八、迭代与终止条件 上述步骤反复进行,直至满足预先设定的终止条件,如达到预定的进化代数、最优适应度不再显著提高或达到某一特定适应度阈值。

5.完整程序

VVV

相关推荐
IT猿手5 小时前
SDMTSP:粒子群优化算法PSO求解单仓库多旅行商问题,可以更改数据集和起点(MATLAB代码)
开发语言·人工智能·matlab·智能优化算法
我爱C编程14 小时前
基于Qlearning强化学习的机器人路线规划matlab仿真
matlab·机器人·强化学习·路线规划·qlearning·机器人路线规划
Evand J1 天前
LOS/NLOS环境建模与三维TOA定位,MATLAB仿真程序,可自定义锚点数量和轨迹点长度
开发语言·matlab
孤亭远见1 天前
COMSOL with Matlab
matlab
图南楠1 天前
simulink离散传递函数得到差分方程并用C语言实现
matlab
信号处理学渣2 天前
matlab画图,选择性显示legend标签
开发语言·matlab
机器学习之心2 天前
Bayes-GRU-Attention的数据多特征分类预测Matlab实现
matlab·分类·gru
叶庭云2 天前
Matlab 和 R 语言的数组索引都是从 1 开始,并且是左闭右闭的
matlab·编程语言·r·数组索引·从 1 开始
γ..2 天前
基于MATLAB的图像增强
开发语言·深度学习·神经网络·学习·机器学习·matlab·音视频
IT猿手2 天前
基于PWLCM混沌映射的麋鹿群优化算法(Elk herd optimizer,EHO)的多无人机协同路径规划,MATLAB代码
算法·elk·机器学习·matlab·无人机·聚类·强化学习