视频输入c++ 调用 libtorch推理

1、支持GPU情况

libtorch 支持GPU情况比较奇怪,目前2.3 版本需要在链接器里面加上以下命令,否则不会支持gpu

-INCLUDE:?ignore_this_library_placeholder@@YAHXZ

2 探测是否支持

加一个函数看你是否支持torch,不然不清楚,看到支持gpu才行

c 复制代码
void IsSupportCuda()
{
    if (torch::cuda::is_available())
    {
        std::cout << "支持GPU" << std::endl;
    }
    else
    {
        std::cout << "不支持GPU" << std::endl;
    }
    torch::Tensor tensor = torch::rand({ 5,3 });
    torch::Device device1(torch::kCUDA);
    tensor.to(device1);
    std::cout << tensor <<"--"<< tensor.options() << std::endl;
};

int main() {
    IsSupportCuda();
    return 0;
}

转化

使用命令转,如下图所示

c 复制代码
yolo export model=yolov8s.pt imgsz=640 format=torchscript

成功以后在目录下面生成文件yolov8s.torchscript

c++ 调用

c 复制代码
int main() {
    //IsSupportCuda();

    //return 0;
    // Device
    torch::Device device(torch::cuda::is_available() ? torch::kCUDA : torch::kCPU);

    // Note that in this example the classes are hard-coded
    std::vector<std::string> classes{ "person", "bicycle", "car", "motorcycle", "airplane", "bus", "train", "truck", "boat", "traffic light", "fire hydrant",
                                      "stop sign", "parking meter", "bench", "bird", "cat", "dog", "horse", "sheep", "cow", "elephant", "bear", "zebra",
                                      "giraffe", "backpack", "umbrella", "handbag", "tie", "suitcase", "frisbee", "skis", "snowboard", "sports ball", "kite",
                                      "baseball bat", "baseball glove", "skateboard", "surfboard", "tennis racket", "bottle", "wine glass", "cup", "fork", "knife",
                                      "spoon", "bowl", "banana", "apple", "sandwich", "orange", "broccoli", "carrot", "hot dog", "pizza", "donut", "cake", "chair",
                                      "couch", "potted plant", "bed", "dining table", "toilet", "tv", "laptop", "mouse", "remote", "keyboard", "cell phone",
                                      "microwave", "oven", "toaster", "sink", "refrigerator", "book", "clock", "vase", "scissors", "teddy bear", "hair drier", "toothbrush" };

    try {
        // Load the model (e.g. yolov8s.torchscript)
        std::string model_path = "./yolov8s.torchscript";
        torch::jit::script::Module yolo_model;
        yolo_model = torch::jit::load(model_path);
        yolo_model.eval();
        yolo_model.to(device, torch::kFloat32);

        // Load image and preprocess
        cv::Mat image = cv::imread("d:/bus.jpg");
        cv::Mat input_image;
        letterbox(image, input_image, { 640, 640 });

        torch::Tensor image_tensor = torch::from_blob(input_image.data, { input_image.rows, input_image.cols, 3 }, torch::kByte).to(device);
        //auto image_tensor_float = image_tensor.to(torch::kFloat32);
        //image_tensor_float /= 255.0;
        image_tensor = image_tensor.toType(torch::kFloat32).div(255);
        image_tensor = image_tensor.permute({ 2, 0, 1 });
        image_tensor = image_tensor.unsqueeze(0);
        std::vector<torch::jit::IValue> inputs{ image_tensor };

        // Inference
        torch::Tensor output = yolo_model.forward(inputs).toTensor().cpu();

        // NMS
        auto keep = non_max_suppression(output)[0];
        auto boxes = keep.index({ Slice(), Slice(None, 4) });
        keep.index_put_({ Slice(), Slice(None, 4) }, scale_boxes({ input_image.rows, input_image.cols }, boxes, { image.rows, image.cols }));

        // Show the results
        for (int i = 0; i < keep.size(0); i++) {
            int x1 = keep[i][0].item().toFloat();
            int y1 = keep[i][1].item().toFloat();
            int x2 = keep[i][2].item().toFloat();
            int y2 = keep[i][3].item().toFloat();
            float conf = keep[i][4].item().toFloat();
            int cls = keep[i][5].item().toInt();
            std::cout << "Rect: [" << x1 << "," << y1 << "," << x2 << "," << y2 << "]  Conf: " << conf << "  Class: " << classes[cls] << std::endl;
        }
        getchar();
    }
    catch (const c10::Error& e) {
        std::cout << e.msg() << std::endl;
    }

    return 0;
}

解码后视频帧调用

先使用opencv,同时使用硬件加速,使用硬件解码,新版本的使用方法已经不一样了,以下先举个例子,指定使用ffmpeg

c 复制代码
int main() {
    // 创建一个 VideoCapture 对象,并指定使用 FFmpeg 作为后端  
    cv::ocl::setUseOpenCL(true);
    if (!cv::ocl::haveOpenCL()) {
        std::cerr << "OpenCL is not available.\n";
        return -1;
    }
    else {
        std::cout << cv::ocl::Device().getDefault().name() << std::endl;
    }

   cv::VideoCapture cap1("rtsp://127.0.0.1/99-640.mkv", cv::CAP_FFMPEG, {
            cv::CAP_PROP_HW_ACCELERATION,(int)cv::VIDEO_ACCELERATION_D3D11,
            cv::CAP_PROP_HW_DEVICE, 0
   });

   // cv::VideoCapture cap2("d:/8k.mp4", cv::CAP_FFMPEG);


    // 检查是否成功打开视频文件  
    if (!cap1.isOpened()) {
        std::cerr << "Error opening video file" << std::endl;
        return -1;
    }
   
    // 检查是否支持硬件加速
    double hw1 = cap1.get(cv::CAP_PROP_HW_ACCELERATION);
   // double hw2 = cap2.get(cv::CAP_PROP_HW_ACCELERATION);
    if (hw1 >= cv::VIDEO_ACCELERATION_ANY ) {
        // 支持硬件加速,尝试启用
        //cap.set(cv::CAP_PROP_HW_ACCELERATION, cv::VIDEO_ACCELERATION_ANY);
        std::cout << "Hardware acceleration enabled" << std::endl;
    }
    else {
        std::cout << "Hardware acceleration not supported or not available" << std::endl;
    }
    // 设置硬件加速(如果支持的话)  
    // 注意:不是所有的平台和驱动程序都支持硬件加速  
   // cap.set(cv::CAP_PROP_HW_ACCELERATION, cv::VIDEO_ACCELERATION_ANY);  
    cv::UMat uFrame,Frame; // GPU 上的 UMat 对象,用于直接接收解码后的数据  
    // 读取并处理视频帧  
    while (true) {
        // 尝试直接从 VideoCapture 读取帧到 UMat  
        cv::UMat m;

        bool ret = cap1.read(m);
        if (!ret) {
            std::cout << "End of video" << std::endl;
            break;
        }
        
        int w = m.cols;
        int h = m.rows;
        //m.copyTo(uFrame);
        
        //uFrame = m.getUMat(cv::ACCESS_READ);

        cv::UMat m1,m2,m3,m4,m5;
        //视频矫正
        rectify_umat(m, w, h, default_K0, default_D0, m1);
        //cv::Mat m1, m2, m3,m4;
        //放大增强
        cv::resize(m1, m2, cv::Size(w*2, h*2),0,0,cv::INTER_CUBIC);

        letterbox(m2, input_image, { 640, 640 });

        torch::Tensor image_tensor = torch::from_blob(input_image.data, { input_image.rows, input_image.cols, 3 }, torch::kByte).to(device);
        //auto image_tensor_float = image_tensor.to(torch::kFloat32);
        //image_tensor_float /= 255.0;
        image_tensor = image_tensor.toType(torch::kFloat32).div(255);
        image_tensor = image_tensor.permute({ 2, 0, 1 });
        image_tensor = image_tensor.unsqueeze(0);
        std::vector<torch::jit::IValue> inputs{ image_tensor };

        // Inference
        torch::Tensor output = yolo_model.forward(inputs).toTensor().cpu();

        // NMS
        auto keep = non_max_suppression(output)[0];
        auto boxes = keep.index({ Slice(), Slice(None, 4) });
        keep.index_put_({ Slice(), Slice(None, 4) }, scale_boxes({ input_image.rows, input_image.cols }, boxes, { image.rows, image.cols }));

        // Show the results
        for (int i = 0; i < keep.size(0); i++) {
            int x1 = keep[i][0].item().toFloat();
            int y1 = keep[i][1].item().toFloat();
            int x2 = keep[i][2].item().toFloat();
            int y2 = keep[i][3].item().toFloat();
            float conf = keep[i][4].item().toFloat();
            int cls = keep[i][5].item().toInt();
            std::cout << "Rect: [" << x1 << "," << y1 << "," << x2 << "," << y2 << "]  Conf: " << conf << "  Class: " << classes[cls] << std::endl;
        }

        func_3_umat(m2, m3);
        func_1_umat(m3, m4);
        func_0_umat(m4, m5);
     
        cv::imshow("m", m);
        cv::imshow("m2", m2);
        cv::imshow("res", m5);
        if (cv::waitKey(10) == 'q') {
            break;
        }
    }

    // 释放资源  
    cap1.release();
    //cap2.release();
    cv::destroyAllWindows();

    return 0;
}

改进

未完待续。。。

相关推荐
双叶83624 分钟前
(C语言)超市管理系统 (正式版)(指针)(数据结构)(清屏操作)(文件读写)
c语言·开发语言·数据结构·c++·windows
末央&1 小时前
【数据结构】手撕AVL树(万字详解)
数据结构·c++
序属秋秋秋1 小时前
《数据结构初阶》【二叉树 精选9道OJ练习】
c语言·数据结构·c++·算法·leetcode
uyeonashi3 小时前
【Boost搜索引擎】构建Boost站内搜索引擎实践
开发语言·c++·搜索引擎
Smile丶凉轩6 小时前
Qt 界面优化(绘图)
开发语言·数据库·c++·qt
small_wh1te_coder7 小时前
从经典力扣题发掘DFS与记忆化搜索的本质 -从矩阵最长递增路径入手 一步步探究dfs思维优化与编程深度思考
c语言·数据结构·c++·stm32·算法·leetcode·深度优先
hjjdebug9 小时前
constexpr 关键字的意义(入门)
c++·constexpr
虾球xz11 小时前
游戏引擎学习第282天:Z轴移动与摄像机运动
c++·学习·游戏引擎
.小墨迹11 小时前
Apollo学习——planning模块(3)之planning_base
linux·开发语言·c++·学习·自动驾驶
龙湾开发11 小时前
计算机图形学编程(使用OpenGL和C++)(第2版)学习笔记 10.增强表面细节(一)过程式凹凸贴图
c++·笔记·学习·3d·图形渲染