视频输入c++ 调用 libtorch推理

1、支持GPU情况

libtorch 支持GPU情况比较奇怪,目前2.3 版本需要在链接器里面加上以下命令,否则不会支持gpu

-INCLUDE:?ignore_this_library_placeholder@@YAHXZ

2 探测是否支持

加一个函数看你是否支持torch,不然不清楚,看到支持gpu才行

c 复制代码
void IsSupportCuda()
{
    if (torch::cuda::is_available())
    {
        std::cout << "支持GPU" << std::endl;
    }
    else
    {
        std::cout << "不支持GPU" << std::endl;
    }
    torch::Tensor tensor = torch::rand({ 5,3 });
    torch::Device device1(torch::kCUDA);
    tensor.to(device1);
    std::cout << tensor <<"--"<< tensor.options() << std::endl;
};

int main() {
    IsSupportCuda();
    return 0;
}

转化

使用命令转,如下图所示

c 复制代码
yolo export model=yolov8s.pt imgsz=640 format=torchscript

成功以后在目录下面生成文件yolov8s.torchscript

c++ 调用

c 复制代码
int main() {
    //IsSupportCuda();

    //return 0;
    // Device
    torch::Device device(torch::cuda::is_available() ? torch::kCUDA : torch::kCPU);

    // Note that in this example the classes are hard-coded
    std::vector<std::string> classes{ "person", "bicycle", "car", "motorcycle", "airplane", "bus", "train", "truck", "boat", "traffic light", "fire hydrant",
                                      "stop sign", "parking meter", "bench", "bird", "cat", "dog", "horse", "sheep", "cow", "elephant", "bear", "zebra",
                                      "giraffe", "backpack", "umbrella", "handbag", "tie", "suitcase", "frisbee", "skis", "snowboard", "sports ball", "kite",
                                      "baseball bat", "baseball glove", "skateboard", "surfboard", "tennis racket", "bottle", "wine glass", "cup", "fork", "knife",
                                      "spoon", "bowl", "banana", "apple", "sandwich", "orange", "broccoli", "carrot", "hot dog", "pizza", "donut", "cake", "chair",
                                      "couch", "potted plant", "bed", "dining table", "toilet", "tv", "laptop", "mouse", "remote", "keyboard", "cell phone",
                                      "microwave", "oven", "toaster", "sink", "refrigerator", "book", "clock", "vase", "scissors", "teddy bear", "hair drier", "toothbrush" };

    try {
        // Load the model (e.g. yolov8s.torchscript)
        std::string model_path = "./yolov8s.torchscript";
        torch::jit::script::Module yolo_model;
        yolo_model = torch::jit::load(model_path);
        yolo_model.eval();
        yolo_model.to(device, torch::kFloat32);

        // Load image and preprocess
        cv::Mat image = cv::imread("d:/bus.jpg");
        cv::Mat input_image;
        letterbox(image, input_image, { 640, 640 });

        torch::Tensor image_tensor = torch::from_blob(input_image.data, { input_image.rows, input_image.cols, 3 }, torch::kByte).to(device);
        //auto image_tensor_float = image_tensor.to(torch::kFloat32);
        //image_tensor_float /= 255.0;
        image_tensor = image_tensor.toType(torch::kFloat32).div(255);
        image_tensor = image_tensor.permute({ 2, 0, 1 });
        image_tensor = image_tensor.unsqueeze(0);
        std::vector<torch::jit::IValue> inputs{ image_tensor };

        // Inference
        torch::Tensor output = yolo_model.forward(inputs).toTensor().cpu();

        // NMS
        auto keep = non_max_suppression(output)[0];
        auto boxes = keep.index({ Slice(), Slice(None, 4) });
        keep.index_put_({ Slice(), Slice(None, 4) }, scale_boxes({ input_image.rows, input_image.cols }, boxes, { image.rows, image.cols }));

        // Show the results
        for (int i = 0; i < keep.size(0); i++) {
            int x1 = keep[i][0].item().toFloat();
            int y1 = keep[i][1].item().toFloat();
            int x2 = keep[i][2].item().toFloat();
            int y2 = keep[i][3].item().toFloat();
            float conf = keep[i][4].item().toFloat();
            int cls = keep[i][5].item().toInt();
            std::cout << "Rect: [" << x1 << "," << y1 << "," << x2 << "," << y2 << "]  Conf: " << conf << "  Class: " << classes[cls] << std::endl;
        }
        getchar();
    }
    catch (const c10::Error& e) {
        std::cout << e.msg() << std::endl;
    }

    return 0;
}

解码后视频帧调用

先使用opencv,同时使用硬件加速,使用硬件解码,新版本的使用方法已经不一样了,以下先举个例子,指定使用ffmpeg

c 复制代码
int main() {
    // 创建一个 VideoCapture 对象,并指定使用 FFmpeg 作为后端  
    cv::ocl::setUseOpenCL(true);
    if (!cv::ocl::haveOpenCL()) {
        std::cerr << "OpenCL is not available.\n";
        return -1;
    }
    else {
        std::cout << cv::ocl::Device().getDefault().name() << std::endl;
    }

   cv::VideoCapture cap1("rtsp://127.0.0.1/99-640.mkv", cv::CAP_FFMPEG, {
            cv::CAP_PROP_HW_ACCELERATION,(int)cv::VIDEO_ACCELERATION_D3D11,
            cv::CAP_PROP_HW_DEVICE, 0
   });

   // cv::VideoCapture cap2("d:/8k.mp4", cv::CAP_FFMPEG);


    // 检查是否成功打开视频文件  
    if (!cap1.isOpened()) {
        std::cerr << "Error opening video file" << std::endl;
        return -1;
    }
   
    // 检查是否支持硬件加速
    double hw1 = cap1.get(cv::CAP_PROP_HW_ACCELERATION);
   // double hw2 = cap2.get(cv::CAP_PROP_HW_ACCELERATION);
    if (hw1 >= cv::VIDEO_ACCELERATION_ANY ) {
        // 支持硬件加速,尝试启用
        //cap.set(cv::CAP_PROP_HW_ACCELERATION, cv::VIDEO_ACCELERATION_ANY);
        std::cout << "Hardware acceleration enabled" << std::endl;
    }
    else {
        std::cout << "Hardware acceleration not supported or not available" << std::endl;
    }
    // 设置硬件加速(如果支持的话)  
    // 注意:不是所有的平台和驱动程序都支持硬件加速  
   // cap.set(cv::CAP_PROP_HW_ACCELERATION, cv::VIDEO_ACCELERATION_ANY);  
    cv::UMat uFrame,Frame; // GPU 上的 UMat 对象,用于直接接收解码后的数据  
    // 读取并处理视频帧  
    while (true) {
        // 尝试直接从 VideoCapture 读取帧到 UMat  
        cv::UMat m;

        bool ret = cap1.read(m);
        if (!ret) {
            std::cout << "End of video" << std::endl;
            break;
        }
        
        int w = m.cols;
        int h = m.rows;
        //m.copyTo(uFrame);
        
        //uFrame = m.getUMat(cv::ACCESS_READ);

        cv::UMat m1,m2,m3,m4,m5;
        //视频矫正
        rectify_umat(m, w, h, default_K0, default_D0, m1);
        //cv::Mat m1, m2, m3,m4;
        //放大增强
        cv::resize(m1, m2, cv::Size(w*2, h*2),0,0,cv::INTER_CUBIC);

        letterbox(m2, input_image, { 640, 640 });

        torch::Tensor image_tensor = torch::from_blob(input_image.data, { input_image.rows, input_image.cols, 3 }, torch::kByte).to(device);
        //auto image_tensor_float = image_tensor.to(torch::kFloat32);
        //image_tensor_float /= 255.0;
        image_tensor = image_tensor.toType(torch::kFloat32).div(255);
        image_tensor = image_tensor.permute({ 2, 0, 1 });
        image_tensor = image_tensor.unsqueeze(0);
        std::vector<torch::jit::IValue> inputs{ image_tensor };

        // Inference
        torch::Tensor output = yolo_model.forward(inputs).toTensor().cpu();

        // NMS
        auto keep = non_max_suppression(output)[0];
        auto boxes = keep.index({ Slice(), Slice(None, 4) });
        keep.index_put_({ Slice(), Slice(None, 4) }, scale_boxes({ input_image.rows, input_image.cols }, boxes, { image.rows, image.cols }));

        // Show the results
        for (int i = 0; i < keep.size(0); i++) {
            int x1 = keep[i][0].item().toFloat();
            int y1 = keep[i][1].item().toFloat();
            int x2 = keep[i][2].item().toFloat();
            int y2 = keep[i][3].item().toFloat();
            float conf = keep[i][4].item().toFloat();
            int cls = keep[i][5].item().toInt();
            std::cout << "Rect: [" << x1 << "," << y1 << "," << x2 << "," << y2 << "]  Conf: " << conf << "  Class: " << classes[cls] << std::endl;
        }

        func_3_umat(m2, m3);
        func_1_umat(m3, m4);
        func_0_umat(m4, m5);
     
        cv::imshow("m", m);
        cv::imshow("m2", m2);
        cv::imshow("res", m5);
        if (cv::waitKey(10) == 'q') {
            break;
        }
    }

    // 释放资源  
    cap1.release();
    //cap2.release();
    cv::destroyAllWindows();

    return 0;
}

改进

未完待续。。。

相关推荐
是娇娇公主~9 分钟前
工厂模式详细讲解
数据库·c++
_OP_CHEN1 小时前
【从零开始的Qt开发指南】(二十三)Qt 界面优化之 QSS 实战指南:从入门到精通,让你的界面颜值飙升!
开发语言·c++·qt·前端开发·界面美化·qss·客户端开发
HellowAmy1 小时前
我的C++规范 - 跳跃的对象
开发语言·c++·代码规范
lucky-billy1 小时前
架构设计 - std::forward 条件转换配合万能引用(T&&)来实现完美转发
c++·完美转发·forward·万能引用
bkspiderx2 小时前
C/C++中float浮点型的存储方式与使用要点
c++
起个名字费劲死了2 小时前
QT + Socket 客户端/服务端 公网通讯
服务器·c++·qt·socket
我是一只小青蛙8883 小时前
位图与布隆过滤器:高效数据结构解析
开发语言·c++·算法
xiaoye-duck3 小时前
吃透C++类和对象(下):初始化列表深度解析
c++
曼巴UE53 小时前
UE5 C++ GameInstanceSubsystem 在学习
c++·ue5·ue
Ethan Wilson3 小时前
VS2019 C++20 模块相关 C1001: 内部编译器错误
开发语言·c++·c++20