Python PyTorch 获取 MNIST 数据

Python PyTorch 获取 MNIST 数据

  • [1 PyTorch 获取 MNIST 数据](#1 PyTorch 获取 MNIST 数据)
  • [2 PyTorch 保存 MNIST 数据](#2 PyTorch 保存 MNIST 数据)
  • [3 PyTorch 显示 MNIST 数据](#3 PyTorch 显示 MNIST 数据)

1 PyTorch 获取 MNIST 数据

python 复制代码
import torch
import numpy as np
import matplotlib.pyplot as plt # type: ignore
from torchvision import datasets, transforms

def mnist_get():
    print(torch.__version__)
    # 定义数据转换
    transform = transforms.Compose([
        transforms.ToTensor(),  # 将图像转换为张量
        transforms.Normalize((0.5,), (0.5,))  # 归一化图像数据
    ])
    # 获取数据
    train_data = datasets.MNIST(root='./data', train=False, download=True, transform=transform)
    test_data = datasets.MNIST(root='./data', train=False, download=True, transform=transform)
    # 训练数据
    train_image = train_data.data.numpy()
    train_label = train_data.targets.numpy()
    # 测试数据
    test_image = test_data.data.numpy()
    test_label = test_data.targets.numpy()

2 PyTorch 保存 MNIST 数据

python 复制代码
import torch
import numpy as np
import matplotlib.pyplot as plt # type: ignore
from torchvision import datasets, transforms

def mnist_save(mnist_path):
    print(torch.__version__)
    # 定义数据转换
    transform = transforms.Compose([
        transforms.ToTensor(),  # 将图像转换为张量
        transforms.Normalize((0.5,), (0.5,))  # 归一化图像数据
    ])
    # 获取数据
    train_data = datasets.MNIST(root='./data', train=False, download=True, transform=transform)
    test_data = datasets.MNIST(root='./data', train=False, download=True, transform=transform)
    # 训练数据
    train_image = train_data.data.numpy()
    train_label = train_data.targets.numpy()
    # 测试数据
    test_image = test_data.data.numpy()
    test_label = test_data.targets.numpy()
    np.savez(mnist_path, train_data=train_image, train_label=train_label, test_data=test_image, test_label=test_label)

mnist_path = 'C:\\Users\\Hyacinth\\Desktop\\mnist.npz'
mnist_save(mnist_path)

3 PyTorch 显示 MNIST 数据

python 复制代码
import torch
import numpy as np
import matplotlib.pyplot as plt # type: ignore
from torchvision import datasets, transforms

def mnist_show(mnist_path):
    data = np.load(mnist_path)
    image = data['train_data'][0:100]
    label = data['train_label'].reshape(-1, )
    plt.figure(figsize = (10, 10))
    for i in range(100):
        print('%f, %f' % (i, label[i]))
        plt.subplot(10, 10, i + 1)
        plt.imshow(image[i])
    plt.show()

mnist_path = 'C:\\Users\\Hyacinth\\Desktop\\mnist.npz'
mnist_show(mnist_path)
相关推荐
java1234_小锋3 分钟前
TensorFlow2 Python深度学习 - TensorFlow2框架入门 - 神经网络基础原理
python·深度学习·tensorflow·tensorflow2
JJJJ_iii4 分钟前
【深度学习03】神经网络基本骨架、卷积、池化、非线性激活、线性层、搭建网络
网络·人工智能·pytorch·笔记·python·深度学习·神经网络
JJJJ_iii13 分钟前
【深度学习05】PyTorch:完整的模型训练套路
人工智能·pytorch·python·深度学习
lly20240632 分钟前
AJAX JSON 实例
开发语言
QiZhang | UESTC42 分钟前
JAVA算法练习题day27
java·开发语言·c++·算法·leetcode·hot100
坚持就完事了1 小时前
2-C语言中的数据类型
c语言·开发语言
ss2731 小时前
手写MyBatis第96弹:异常断点精准捕获MyBatis深层BUG
java·开发语言·bug·mybatis
程序员小远1 小时前
常用的测试用例
自动化测试·软件测试·python·功能测试·测试工具·职场和发展·测试用例
IT学长编程1 小时前
计算机毕业设计 基于EChants的海洋气象数据可视化平台设计与实现 Python 大数据毕业设计 Hadoop毕业设计选题【附源码+文档报告+安装调试】
大数据·hadoop·python·毕业设计·课程设计·毕业论文·海洋气象数据可视化平台
辣椒http_出海辣椒1 小时前
Python 数据抓取实战:从基础到反爬策略的完整指南
python