Python PyTorch 获取 MNIST 数据

Python PyTorch 获取 MNIST 数据

  • [1 PyTorch 获取 MNIST 数据](#1 PyTorch 获取 MNIST 数据)
  • [2 PyTorch 保存 MNIST 数据](#2 PyTorch 保存 MNIST 数据)
  • [3 PyTorch 显示 MNIST 数据](#3 PyTorch 显示 MNIST 数据)

1 PyTorch 获取 MNIST 数据

python 复制代码
import torch
import numpy as np
import matplotlib.pyplot as plt # type: ignore
from torchvision import datasets, transforms

def mnist_get():
    print(torch.__version__)
    # 定义数据转换
    transform = transforms.Compose([
        transforms.ToTensor(),  # 将图像转换为张量
        transforms.Normalize((0.5,), (0.5,))  # 归一化图像数据
    ])
    # 获取数据
    train_data = datasets.MNIST(root='./data', train=False, download=True, transform=transform)
    test_data = datasets.MNIST(root='./data', train=False, download=True, transform=transform)
    # 训练数据
    train_image = train_data.data.numpy()
    train_label = train_data.targets.numpy()
    # 测试数据
    test_image = test_data.data.numpy()
    test_label = test_data.targets.numpy()

2 PyTorch 保存 MNIST 数据

python 复制代码
import torch
import numpy as np
import matplotlib.pyplot as plt # type: ignore
from torchvision import datasets, transforms

def mnist_save(mnist_path):
    print(torch.__version__)
    # 定义数据转换
    transform = transforms.Compose([
        transforms.ToTensor(),  # 将图像转换为张量
        transforms.Normalize((0.5,), (0.5,))  # 归一化图像数据
    ])
    # 获取数据
    train_data = datasets.MNIST(root='./data', train=False, download=True, transform=transform)
    test_data = datasets.MNIST(root='./data', train=False, download=True, transform=transform)
    # 训练数据
    train_image = train_data.data.numpy()
    train_label = train_data.targets.numpy()
    # 测试数据
    test_image = test_data.data.numpy()
    test_label = test_data.targets.numpy()
    np.savez(mnist_path, train_data=train_image, train_label=train_label, test_data=test_image, test_label=test_label)

mnist_path = 'C:\\Users\\Hyacinth\\Desktop\\mnist.npz'
mnist_save(mnist_path)

3 PyTorch 显示 MNIST 数据

python 复制代码
import torch
import numpy as np
import matplotlib.pyplot as plt # type: ignore
from torchvision import datasets, transforms

def mnist_show(mnist_path):
    data = np.load(mnist_path)
    image = data['train_data'][0:100]
    label = data['train_label'].reshape(-1, )
    plt.figure(figsize = (10, 10))
    for i in range(100):
        print('%f, %f' % (i, label[i]))
        plt.subplot(10, 10, i + 1)
        plt.imshow(image[i])
    plt.show()

mnist_path = 'C:\\Users\\Hyacinth\\Desktop\\mnist.npz'
mnist_show(mnist_path)
相关推荐
Hello.Reader1 分钟前
全面解析 Golang Gin 框架
开发语言·golang·gin
禁默12 分钟前
深入浅出:AWT的基本组件及其应用
java·开发语言·界面编程
Cachel wood18 分钟前
python round四舍五入和decimal库精确四舍五入
java·linux·前端·数据库·vue.js·python·前端框架
Code哈哈笑21 分钟前
【Java 学习】深度剖析Java多态:从向上转型到向下转型,解锁动态绑定的奥秘,让代码更优雅灵活
java·开发语言·学习
終不似少年遊*24 分钟前
pyecharts
python·信息可视化·数据分析·学习笔记·pyecharts·使用技巧
程序猿进阶24 分钟前
深入解析 Spring WebFlux:原理与应用
java·开发语言·后端·spring·面试·架构·springboot
Python之栈25 分钟前
【无标题】
数据库·python·mysql
qq_4336184427 分钟前
shell 编程(二)
开发语言·bash·shell
charlie11451419141 分钟前
C++ STL CookBook
开发语言·c++·stl·c++20
袁袁袁袁满41 分钟前
100天精通Python(爬虫篇)——第113天:‌爬虫基础模块之urllib详细教程大全
开发语言·爬虫·python·网络爬虫·爬虫实战·urllib·urllib模块教程