【AI大模型】Prompt Engineering 基础知识与挑战

前言

Prompt Engineering,即提示工程,是一种新兴的技术领域,它主要研究如何设计有效的提示(Prompt)来引导用户生成特定的输出。随着自然语言处理技术的快速发展,特别是预训练语言模型(如 GPT-3)的崛起,Prompt Engineering 变得越来越重要。本文将介绍 Prompt Engineering 的一些基础知识,并分享一些思考。

什么是 Prompt Engineering?

Prompt Engineering 是指通过精心设计的提示来引导用户生成特定输出的一门技术。在自然语言处理领域,Prompt Engineering 通常用于指导语言模型生成符合特定要求的文本输出。例如,通过设计一个提示,我们可以让语言模型生成一段描述某个主题的文章,或者生成一个符合特定格式的对话回复。调整prompt是发挥AIGC模型输出的一项技术,好的prompt可以让一个LLM发挥到极致来帮助人类解决问题。

Prompt Engineering 的基本概念

1. 提示(Prompt)

提示是 Prompt Engineering 的核心概念,它通常是一个文本字符串,用于指导用户生成特定的输出。提示的设计需要考虑多个因素,包括提示的格式、内容、上下文等。

2. 语言模型(Language Model)

语言模型是一种自然语言处理技术,它能够根据给定的输入生成相应的文本输出。预训练语言模型(如 GPT-3)是目前最先进的技术之一,它通过大规模的预训练数据学习到了丰富的语言知识,能够生成高质量的自然语言文本。

3. 提示类型(Prompt Template)

1.问题式

2.陈述式

3.指令式

4.情感传入式

Prompt Engineering 的应用场景

使用prompt一些技巧

1.使用特殊符号分隔指令和问题

2.提供背景信息

3.提供实例

4.设定情景

5.按步骤进行提问

6.交互式提问

Prompt Engineering 可以应用于多种场景,包括但不限于

文本生成:通过设计提示,我们可以指导语言模型生成特定主题的文章、故事、对话等。

问答系统:通过设计提示,我们可以指导语言模型生成针对特定问题的答案。

机器翻译:通过设计提示,我们可以指导语言模型生成特定语言风格的翻译文本。

代码生成:通过设计提示,我们可以指导语言模型生成特定编程语言的代码片段。

Prompt Engineering 的挑战与思考

尽管 Prompt Engineering 在自然语言处理领域有着广泛的应用前景,但它也面临着一些挑战和问题,包括:

提示设计 :如何设计有效的提示来引导用户生成特定的输出是一个具有挑战性的问题。提示的设计需要考虑多个因素,包括提示的格式、内容、上下文等。
数据质量 :Prompt Engineering 的效果很大程度上取决于预训练语言模型的质量。如何获取高质量的预训练数据和提高语言模型的性能是一个重要的问题。
模型解释性 :预训练语言模型通常是一个黑盒模型,很难解释其生成特定输出的原因。如何提高模型的解释性,以便更好地理解其工作原理和生成特定输出的原因是一个具有挑战性的问题。
大模型幻觉问题:根据提示会反应出一些并不存在的信息或事实。或者出现答非所问的内容。

Prompt Engineering 是一门新兴的技术领域,它通过设计有效的提示来引导用户生成特定的输出。随着自然语言处理技术的不断发展,Prompt Engineering 将在自然语言处理领域发挥越来越重要的作用。然而,Prompt Engineering 也面临着一些挑战和问题,需要进一步的研究和探索。

相关推荐
睿观·ERiC6 分钟前
[技术前沿] 2025电商格局重构:当流量红利消失,AI与数据如何成为增长的新基石?
人工智能·产品运营·跨境电商·睿观ai
兔兔爱学习兔兔爱学习6 分钟前
LangChain4j学习一:聊天和语言模型
人工智能·学习·语言模型
IT_陈寒10 分钟前
我用这5个JavaScript性能优化技巧,让页面加载速度提升了60%
前端·人工智能·后端
亚马逊云开发者11 分钟前
基于Strands Agent框架的考题生成及Agent 效果评估
人工智能
deephub12 分钟前
构建有记忆的 AI Agent:SQLite 存储 + 向量检索完整方案示例
数据库·人工智能·sqlite·大语言模型·向量检索·智能体
mailangduoduo13 分钟前
残差网络的介绍及ResNet-18的搭建(pytorch版)
人工智能·深度学习·残差网络·卷积神经网络·分类算法·1024程序员节
LDG_AGI20 分钟前
【推荐系统】深度学习训练框架(一):深入剖析Spark集群计算中Master与Pytorch分布式计算Master的区别
人工智能·深度学习·算法·机器学习·spark
LDG_AGI21 分钟前
【推荐系统】深度学习训练框架(二):深入剖析Spark Cluster模式下DDP网络配置解析
大数据·网络·人工智能·深度学习·算法·机器学习·spark
ai智能获客_狐狐24 分钟前
电商零售行业外呼优势
人工智能·算法·自然语言处理·语音识别·零售
算家云25 分钟前
推理成本吞噬AI未来,云计算如何平衡速度与成本的难题?
人工智能·云计算·模型训练·算家云·租算力,到算家云·算家计算