数据分析数据预处理:重复值(duplicated方法)

高频数据的重复值处理

数据源为高频 trades 数据

1. 导入数据

复制代码
import pandas as pd

df = pd.read_csv('hf_data.csv')

print(df)

2. duplicate方法查看重复值

(1)subset 参数指定columns name

复制代码
df.duplicated(subset='localtime').sum()

subset指定localtime判断是否存在重复值,返回bool

复制代码
check_localtime = df.duplicated(subset='localtime')

df[check_localtime>0].tail(20)

可以看到同个时间戳有多笔成交。

3. 重复值处理

针对不同的数据需求,最简单的三种重复值处理方法。

(1)drop_duplicated() 直接删除掉重复数据

复制代码
df_drop_duplicate = df.drop_duplicates(subset='localtime')

print("原数据shape",df.shape)
print("删除重复值后数据shape",df_drop_duplicate.shape)
print("检验重复值,",df_drop_duplicate.duplicated().sum())

可以看到重复数据占比还是比较多的,若重复数据有意义,比如该数据描述的是 交易数据,则当同个时间戳有多个交易数据描述了当下市场的活跃情况;因此用该方案做数据处理并不一定合适。

(2)保留重复值中的第一个或最后一个:drop_duplicated的keep参数

复制代码
df_keep_last = df.drop_duplicates(subset='localtime',keep='last')

当我们想保留重复数据最后一个值,可以使用drop_duplicated的keep参数,"last"为最后一个值,"first"为第一个值。

(3)使用groupby对重复值做运算

分析原数据:localtime重复是因为同个时间多笔成交单形成,其次数据中有其他的属性比如价格(price),成交量(qty),交易方向(side);因此比较合适的处理方法是将数据时间戳合并到最小单位1ms,而针对不同的属性,可以采取:保留最后一个价格,总成交量等等;这样即处理了重复值的问题,也保留了数据中的信息

复制代码
df.groupby(by='localtime').agg({'qty':"sum",'price':"last"})
相关推荐
Geo_V19 分钟前
OpenAI 大模型 API 使用示例
python·chatgpt·openai·大模型应用·llm 开发
Hello_WOAIAI23 分钟前
2.4 python装饰器在 Web 框架和测试中的实战应用
开发语言·前端·python
百锦再33 分钟前
第1章 Rust语言概述
java·开发语言·人工智能·python·rust·go·1024程序员节
tokepson1 小时前
chatgpt-to-md优化并重新复习
python·ai·技术·pypi·记录
Victory_orsh1 小时前
“自然搞懂”深度学习(基于Pytorch架构)——010203
人工智能·pytorch·python·深度学习·神经网络·算法·机器学习
java1234_小锋1 小时前
PyTorch2 Python深度学习 - 模型保存与加载
开发语言·python·深度学习·pytorch2
Python图像识别1 小时前
74_基于深度学习的垃圾桶垃圾溢出检测系统(yolo11、yolov8、yolov5+UI界面+Python项目源码+模型+标注好的数据集)
python·深度学习·yolo
MrSYJ1 小时前
可以指定 Jupyter Notebook 使用的虚拟环境吗
python·llm·agent
quant_19861 小时前
【教程】使用加密货币行情接口 - 查询比特币实时价格
开发语言·后端·python·websocket·网络协议
ytttr8731 小时前
MATLAB实现经验模态分解(EMD)与希尔伯特变换获取能量谱
人工智能·python·matlab