数据分析数据预处理:重复值(duplicated方法)

高频数据的重复值处理

数据源为高频 trades 数据

1. 导入数据

复制代码
import pandas as pd

df = pd.read_csv('hf_data.csv')

print(df)

2. duplicate方法查看重复值

(1)subset 参数指定columns name

复制代码
df.duplicated(subset='localtime').sum()

subset指定localtime判断是否存在重复值,返回bool

复制代码
check_localtime = df.duplicated(subset='localtime')

df[check_localtime>0].tail(20)

可以看到同个时间戳有多笔成交。

3. 重复值处理

针对不同的数据需求,最简单的三种重复值处理方法。

(1)drop_duplicated() 直接删除掉重复数据

复制代码
df_drop_duplicate = df.drop_duplicates(subset='localtime')

print("原数据shape",df.shape)
print("删除重复值后数据shape",df_drop_duplicate.shape)
print("检验重复值,",df_drop_duplicate.duplicated().sum())

可以看到重复数据占比还是比较多的,若重复数据有意义,比如该数据描述的是 交易数据,则当同个时间戳有多个交易数据描述了当下市场的活跃情况;因此用该方案做数据处理并不一定合适。

(2)保留重复值中的第一个或最后一个:drop_duplicated的keep参数

复制代码
df_keep_last = df.drop_duplicates(subset='localtime',keep='last')

当我们想保留重复数据最后一个值,可以使用drop_duplicated的keep参数,"last"为最后一个值,"first"为第一个值。

(3)使用groupby对重复值做运算

分析原数据:localtime重复是因为同个时间多笔成交单形成,其次数据中有其他的属性比如价格(price),成交量(qty),交易方向(side);因此比较合适的处理方法是将数据时间戳合并到最小单位1ms,而针对不同的属性,可以采取:保留最后一个价格,总成交量等等;这样即处理了重复值的问题,也保留了数据中的信息

复制代码
df.groupby(by='localtime').agg({'qty':"sum",'price':"last"})
相关推荐
用户277844910499313 小时前
借助DeepSeek智能生成测试用例:从提示词到Excel表格的全流程实践
人工智能·python
JavaEdge在掘金16 小时前
ssl.SSLCertVerificationError报错解决方案
python
我不会编程55516 小时前
Python Cookbook-5.1 对字典排序
开发语言·数据结构·python
老歌老听老掉牙16 小时前
平面旋转与交线投影夹角计算
python·线性代数·平面·sympy
满怀101517 小时前
Python入门(7):模块
python
无名之逆17 小时前
Rust 开发提效神器:lombok-macros 宏库
服务器·开发语言·前端·数据库·后端·python·rust
你觉得20517 小时前
哈尔滨工业大学DeepSeek公开课:探索大模型原理、技术与应用从GPT到DeepSeek|附视频与讲义下载方法
大数据·人工智能·python·gpt·学习·机器学习·aigc
啊喜拔牙17 小时前
1. hadoop 集群的常用命令
java·大数据·开发语言·python·scala
__lost18 小时前
Pysides6 Python3.10 Qt 画一个时钟
python·qt