数据分析数据预处理:重复值(duplicated方法)

高频数据的重复值处理

数据源为高频 trades 数据

1. 导入数据

复制代码
import pandas as pd

df = pd.read_csv('hf_data.csv')

print(df)

2. duplicate方法查看重复值

(1)subset 参数指定columns name

复制代码
df.duplicated(subset='localtime').sum()

subset指定localtime判断是否存在重复值,返回bool

复制代码
check_localtime = df.duplicated(subset='localtime')

df[check_localtime>0].tail(20)

可以看到同个时间戳有多笔成交。

3. 重复值处理

针对不同的数据需求,最简单的三种重复值处理方法。

(1)drop_duplicated() 直接删除掉重复数据

复制代码
df_drop_duplicate = df.drop_duplicates(subset='localtime')

print("原数据shape",df.shape)
print("删除重复值后数据shape",df_drop_duplicate.shape)
print("检验重复值,",df_drop_duplicate.duplicated().sum())

可以看到重复数据占比还是比较多的,若重复数据有意义,比如该数据描述的是 交易数据,则当同个时间戳有多个交易数据描述了当下市场的活跃情况;因此用该方案做数据处理并不一定合适。

(2)保留重复值中的第一个或最后一个:drop_duplicated的keep参数

复制代码
df_keep_last = df.drop_duplicates(subset='localtime',keep='last')

当我们想保留重复数据最后一个值,可以使用drop_duplicated的keep参数,"last"为最后一个值,"first"为第一个值。

(3)使用groupby对重复值做运算

分析原数据:localtime重复是因为同个时间多笔成交单形成,其次数据中有其他的属性比如价格(price),成交量(qty),交易方向(side);因此比较合适的处理方法是将数据时间戳合并到最小单位1ms,而针对不同的属性,可以采取:保留最后一个价格,总成交量等等;这样即处理了重复值的问题,也保留了数据中的信息

复制代码
df.groupby(by='localtime').agg({'qty':"sum",'price':"last"})
相关推荐
猫头虎1 小时前
如何查看局域网内IP冲突问题?如何查看局域网IP环绕问题?arp -a命令如何使用?
网络·python·网络协议·tcp/ip·开源·pandas·pip
沿着路走到底1 小时前
python 基础
开发语言·python
非极限码农2 小时前
Neo4j图数据库上手指南
大数据·数据库·数据分析·neo4j
咋吃都不胖lyh2 小时前
SQL-多对多关系
android·mysql·数据分析
烛阴3 小时前
武装你的Python“工具箱”:盘点10个你必须熟练掌握的核心方法
前端·python
杨枝甘露小码3 小时前
Python学习之基础篇
开发语言·python
liliangcsdn3 小时前
LLM时代基于unstructured解析非结构化pdf
linux·服务器·数据分析
我是华为OD~HR~栗栗呀4 小时前
23届考研-Java面经(华为OD)
java·c++·python·华为od·华为·面试
在云上(oncloudai)4 小时前
深入解析 Amazon Athena:云上高效数据分析的关键引擎
数据挖掘·数据分析
小蕾Java4 小时前
PyCharm 软件使用各种问题 ,解决教程
ide·python·pycharm