介绍一个在数据分析中常用的函数:data.iloc[]

平时处理数据集中,总是需要选中一些列的数据,去预测其他列的数据,所以data.iloc[],在数据分析中显得尤为方便。

介绍一下data.iloc[]

data.iloc[] 是 Python 中 pandas 库的一个非常有用的功能,它允许你通过行和列的整数位置索引来选择数据。iloc 是 "integer location" 的缩写,意味着你可以通过指定行和列的整数索引来选择数据,而不是使用标签。

以下是一些使用 data.iloc[] 的基本示例:

  1. 选择单个元素

    使用 data.iloc[row_index, column_index] 来选择特定的元素。

    python 复制代码
    element = data.iloc[0, 1]  # 选择第1行第2列的元素
  2. 选择一行

    使用 data.iloc[i,:] 来选择第 i 行的所有列。

    python 复制代码
    row = data.iloc[2, :]  # 选择第3行的所有列
  3. 选择一列

    使用 data.iloc[:, j] 来选择第 j 列的所有行。

    python 复制代码
    column = data.iloc[:, 1]  # 选择第2列的所有行
  4. 选择多个行和列

    使用 data.iloc[i:m, j:n] 来选择从第 i 行到第 m 行,第 j 列到第 n 列的数据。

    python 复制代码
    sub_data = data.iloc[0:3, 1:4]  # 选择第1行到第3行,第2列到第4列的数据
  5. 使用切片
    iloc 也支持 Python 的切片语法,可以用于选择行或列的范围。

    python 复制代码
    sub_data_rows = data.iloc[0:5:2, :]  # 选择第1行到第5行,步长为2的行
    sub_data_cols = data.iloc[:, 1:5:2]  # 选择第2列到第5列,步长为2的列
  6. 选择多个不连续的行或列

    使用数组或列表来选择多个不连续的行或列。

    python 复制代码
    selected_rows = data.iloc[[0, 2, 4], :]  # 选择第1、3、5行的所有列
    selected_cols = data.iloc[:, [1, 3]]     # 选择第2、4列的所有行

请注意,在使用 iloc 时,索引是从0开始的,即第一行或第一列的索引是0。此外,iloc 只能用于选择行和列,不能用于选择 DataFrame 中的标签(即列名或索引)。如果你需要基于标签选择数据,应该使用 loc 而不是 iloc

在数据分析代码中的应用

这是在一个数据分析代码中的一部分,这里就用了iloc[]选取前两列作为特征数据,第三列作为目标变量(也就是通过前两列的值预测最后一列的数据)。

python 复制代码
# 1. 数据加载
data = pd.read_csv('data.csv')
X = data.iloc[:, :2]  # 取前两列作为特征
y = data.iloc[:, 2]  # 取第三列作为目标变量

# 2. 数据预处理
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
scaler = StandardScaler()
X_train_scaled = scaler.fit_transform(X_train)
X_test_scaled = scaler.transform(X_test)
相关推荐
二向箔reverse7 分钟前
机器学习入门:线性回归详解与实战
人工智能·机器学习
真就死难15 分钟前
Rerank 模型的其中两种路径:BERT 相似度与 CoT 推理
人工智能·机器学习·rag
无规则ai23 分钟前
AI三巨头:机器学习、深度学习与人工智能解析
人工智能·深度学习·机器学习
不剪发的Tony老师33 分钟前
字节跳动正式开源AI智能体开发平台Coze
人工智能·coze
love530love37 分钟前
Windows 如何更改 ModelScope 的模型下载缓存位置?
运维·人工智能·windows·python·缓存·modelscope
一百天成为python专家3 小时前
数据可视化
开发语言·人工智能·python·机器学习·信息可视化·numpy
金井PRATHAMA3 小时前
主要分布在背侧海马体(dHPC)CA1区域(dCA1)的时空联合细胞对NLP中的深层语义分析的积极影响和启示
人工智能·神经网络·自然语言处理
说私域3 小时前
技术赋能与营销创新:开源链动2+1模式AI智能名片S2B2C商城小程序的流量转化路径研究
人工智能·小程序·开源
倒悬于世6 小时前
开源的语音合成大模型-Cosyvoice使用介绍
人工智能·python·语音识别
pk_xz1234567 小时前
光电二极管探测器电流信号处理与指令输出系统
人工智能·深度学习·数学建模·数据挖掘·信号处理·超分辨率重建