【Transformer系列(3)】cross attention(交叉注意力)

一、cross attention和self-attention的不同

Cross attentionself-attention是在自然语言处理中常用的两种注意力机制。

Self-attention是一种自我关注机制,用于计算输入序列中每个元素与其他元素的关联程度。具体来说,对于给定的输入序列,self-attention机制将每个元素与序列中的所有元素计算关联度,并根据关联度对序列中的每个元素进行加权求和。这种机制使模型能够捕捉到输入序列中不同元素之间的关系,从而更好地理解输入的上下文信息。

Cross attention是在两个不同的输入序列之间计算关联度和加权求和的机制。具体来说,给定两个输入序列,cross attention机制将一个序列中的每个元素与另一个序列中的所有元素计算关联度,并根据关联度对两个序列中的每个元素进行加权求和。这样的机制使模型能够建立不同序列之间的关联关系,并将两个序列的信息融合起来。

因此,self-attentioncross attention的主要区别在于计算关联度和加权求和的对象不同。self-attention用于单一输入序列,用于捕捉序列内元素之间的关系;而cross attention用于两个不同输入序列之间,用于建立不同序列之间的关联关系。

二、代码实现

这个代码实现了一个简单的交叉注意力模块,它接受两个输入x1和x2,并计算它们之间的交叉注意力。在forward方法中,我们首先通过线性变换将输入进行映射,然后计算注意力权重,最后使用注意力权重加权求和得到输出结果。注意力权重使用softmax函数进行归一化处理。

python 复制代码
import torch
import torch.nn as nn

class CrossAttention(nn.Module):
    def __init__(self, hidden_dim):
        super(CrossAttention, self).__init__()
        self.linear_q = nn.Linear(hidden_dim, hidden_dim, bias=False)
        self.linear_k = nn.Linear(hidden_dim, hidden_dim, bias=False)
        self.linear_v = nn.Linear(hidden_dim, hidden_dim, bias=False)
        self.softmax = nn.Softmax(dim=-1)
        self.linear_out = nn.Linear(hidden_dim, hidden_dim, bias=False)
    
    def forward(self, x1, x2):
        q = self.linear_q(x1)  # query
        k = self.linear_k(x2)  # key
        v = self.linear_v(x2)  # value
        
        # 计算注意力权重
        attn_weights = torch.matmul(q, k.transpose(-2, -1))
        attn_weights = self.softmax(attn_weights)
        
        # 使用注意力权重加权求和
        attn_output = torch.matmul(attn_weights, v)
        
        # 输出结果
        output = self.linear_out(attn_output)
        return output

# 示例输入
x1 = torch.tensor([[1, 2, 3], [4, 5, 6]], dtype=torch.float32)
x2 = torch.tensor([[7, 8, 9], [10, 11, 12]], dtype=torch.float32)

# 创建交叉注意力模型
cross_attention = CrossAttention(hidden_dim=3)

# 前向传播计算结果
output = cross_attention(x1, x2)
print(output)
 
相关推荐
水如烟4 小时前
孤能子视角:“组织行为学–组织文化“
人工智能
大山同学4 小时前
图片补全-Context Encoder
人工智能·机器学习·计算机视觉
薛定谔的猫19824 小时前
十七、用 GPT2 中文对联模型实现经典上联自动对下联:
人工智能·深度学习·gpt2·大模型 训练 调优
壮Sir不壮5 小时前
2026年奇点:Clawdbot引爆个人AI代理
人工智能·ai·大模型·claude·clawdbot·moltbot·openclaw
PaperRed ai写作降重助手5 小时前
高性价比 AI 论文写作软件推荐:2026 年预算友好型
人工智能·aigc·论文·写作·ai写作·智能降重
玉梅小洋5 小时前
Claude Code 从入门到精通(七):Sub Agent 与 Skill 终极PK
人工智能·ai·大模型·ai编程·claude·ai工具
-嘟囔着拯救世界-5 小时前
【保姆级教程】Win11 下从零部署 Claude Code:本地环境配置 + VSCode 可视化界面全流程指南
人工智能·vscode·ai·编辑器·html5·ai编程·claude code
正见TrueView5 小时前
程一笑的价值选择:AI金玉其外,“收割”老人败絮其中
人工智能
Imm7775 小时前
中国知名的车膜品牌推荐几家
人工智能·python
风静如云5 小时前
Claude Code:进入dash模式
人工智能