【Transformer系列(3)】cross attention(交叉注意力)

一、cross attention和self-attention的不同

Cross attentionself-attention是在自然语言处理中常用的两种注意力机制。

Self-attention是一种自我关注机制,用于计算输入序列中每个元素与其他元素的关联程度。具体来说,对于给定的输入序列,self-attention机制将每个元素与序列中的所有元素计算关联度,并根据关联度对序列中的每个元素进行加权求和。这种机制使模型能够捕捉到输入序列中不同元素之间的关系,从而更好地理解输入的上下文信息。

Cross attention是在两个不同的输入序列之间计算关联度和加权求和的机制。具体来说,给定两个输入序列,cross attention机制将一个序列中的每个元素与另一个序列中的所有元素计算关联度,并根据关联度对两个序列中的每个元素进行加权求和。这样的机制使模型能够建立不同序列之间的关联关系,并将两个序列的信息融合起来。

因此,self-attentioncross attention的主要区别在于计算关联度和加权求和的对象不同。self-attention用于单一输入序列,用于捕捉序列内元素之间的关系;而cross attention用于两个不同输入序列之间,用于建立不同序列之间的关联关系。

二、代码实现

这个代码实现了一个简单的交叉注意力模块,它接受两个输入x1和x2,并计算它们之间的交叉注意力。在forward方法中,我们首先通过线性变换将输入进行映射,然后计算注意力权重,最后使用注意力权重加权求和得到输出结果。注意力权重使用softmax函数进行归一化处理。

python 复制代码
import torch
import torch.nn as nn

class CrossAttention(nn.Module):
    def __init__(self, hidden_dim):
        super(CrossAttention, self).__init__()
        self.linear_q = nn.Linear(hidden_dim, hidden_dim, bias=False)
        self.linear_k = nn.Linear(hidden_dim, hidden_dim, bias=False)
        self.linear_v = nn.Linear(hidden_dim, hidden_dim, bias=False)
        self.softmax = nn.Softmax(dim=-1)
        self.linear_out = nn.Linear(hidden_dim, hidden_dim, bias=False)
    
    def forward(self, x1, x2):
        q = self.linear_q(x1)  # query
        k = self.linear_k(x2)  # key
        v = self.linear_v(x2)  # value
        
        # 计算注意力权重
        attn_weights = torch.matmul(q, k.transpose(-2, -1))
        attn_weights = self.softmax(attn_weights)
        
        # 使用注意力权重加权求和
        attn_output = torch.matmul(attn_weights, v)
        
        # 输出结果
        output = self.linear_out(attn_output)
        return output

# 示例输入
x1 = torch.tensor([[1, 2, 3], [4, 5, 6]], dtype=torch.float32)
x2 = torch.tensor([[7, 8, 9], [10, 11, 12]], dtype=torch.float32)

# 创建交叉注意力模型
cross_attention = CrossAttention(hidden_dim=3)

# 前向传播计算结果
output = cross_attention(x1, x2)
print(output)
 
相关推荐
FL162386312918 小时前
古籍影文公开古籍OCR检测数据集VOC格式共计8个文件
人工智能·ocr
递归不收敛20 小时前
专属虚拟环境:Hugging Face数据集批量下载(无登录+国内加速)完整指南
人工智能·笔记·git·python·学习·pycharm
知识搬运工人21 小时前
传统卷积神经网络中的核心运算是卷积或者矩阵乘,请问transformer模型架构主要的计算
矩阵·cnn·transformer
qq_2715817921 小时前
Ubuntu OpenCV C++ 获取Astra Pro摄像头图像
人工智能·opencv·计算机视觉
电鱼智能的电小鱼21 小时前
基于电鱼 ARM 工控机的井下AI故障诊断方案——让煤矿远程监控更智能、更精准
网络·arm开发·人工智能·算法·边缘计算
拉姆哥的小屋21 小时前
时间序列早期分类中的置信度累积问题:从ECE-C到时序依赖建模
大数据·人工智能
蚁巡信息巡查系统1 天前
政府网站与政务新媒体监测服务主要是做什么的?
大数据·人工智能
林恒smileZAZ1 天前
移动端h5适配方案
人工智能·python·tensorflow
伟贤AI之路1 天前
开源!纯 HTML 实现支持 0.75~2× 变速、iOS 熄屏防中断的英语点读站
人工智能·ai编程
编码时空的诗意行者1 天前
LM实现教程:基于 nanochat项目 从零开始理解大语言模型
人工智能·语言模型·自然语言处理