MLP实现fashion_mnist数据集分类(2)-函数式API构建模型(tensorflow)

使用函数式API构建模型,使得模型可以处理多输入多输出。

1、查看tensorflow版本

python 复制代码
import tensorflow as tf

print('Tensorflow Version:{}'.format(tf.__version__))
print(tf.config.list_physical_devices())

2、fashion_mnist数据集分类模型

2.1 使用Sequential构建模型

python 复制代码
from keras import Sequential
from keras.layers import Flatten,Dense,Dropout
from keras import Input

model = Sequential()
model.add(Input(shape=(28,28)))
model.add(Flatten())
model.add(Dense(units=256,kernel_initializer='normal',activation='relu'))
model.add(Dropout(rate=0.1))
model.add(Dense(units=64,kernel_initializer='normal',activation='relu'))
model.add(Dropout(rate=0.1))
model.add(Dense(units=10,kernel_initializer='normal',activation='softmax'))
model.summary()

2.2 使用函数式API构建模型

python 复制代码
from keras.layers import Flatten,Dense,Dropout
from keras import Input,Model

input = Input(shape=(28,28))
x = Flatten()(input)
x = Dense(units=256,kernel_initializer='normal',activation='relu')(x)
x = Dropout(rate=0.1)(x)
x = Dense(units=64,kernel_initializer='normal',activation='relu')(x)
x = Dropout(rate=0.1)(x)
output = Dense(units=10,kernel_initializer='normal',activation='softmax')(x)
model = Model(inputs=input, outputs=output)
model.summary()

可以看到两个模型的结构是一样的,编译和训练也是一样的。

3、使用函数式API搭建多输入多输出模型

两个输入一个输出,对比两个图片是否一样。

python 复制代码
from keras.layers import Flatten,Dense,Dropout
from keras import Input,Model
import keras

input1 = Input(shape=(28,28))
input2 = Input(shape=(28,28))
x1 = Flatten()(input1)
x2 = Flatten()(input2)
x = keras.layers.concatenate([x1,x2])
x = Dense(units=256,kernel_initializer='normal',activation='relu')(x)
x = Dropout(rate=0.1)(x)
x = Dense(units=64,kernel_initializer='normal',activation='relu')(x)
x = Dropout(rate=0.1)(x)
output = Dense(units=1,kernel_initializer='normal',activation='sigmoid')(x)
model = Model(inputs=[input1,input2], outputs=output) # 两个输入,一个输出
model.summary()
相关推荐
绝顶大聪明9 小时前
【深度学习】神经网络-part2
人工智能·深度学习·神经网络
Danceful_YJ9 小时前
16.使用ResNet网络进行Fashion-Mnist分类
人工智能·深度学习·神经网络·resnet
海绵波波10711 小时前
opencv、torch、torchvision、tensorflow的区别
人工智能·opencv·tensorflow
甄卷12 小时前
李沐动手学深度学习Pytorch-v2笔记【08线性回归+基础优化算法】2
pytorch·深度学习·算法
豆豆12 小时前
神经网络构建
人工智能·深度学习·神经网络
lishaoan7713 小时前
用TensorFlow进行逻辑回归(四)
人工智能·tensorflow·逻辑回归
一勺汤14 小时前
多尺度频率辅助类 Mamba 线性注意力模块(MFM),融合频域和空域特征,提升多尺度、复杂场景下的目标检测能力
深度学习·yolo·yolov12·yolo12·yolo12改进·小目标·mamba like
t_hj14 小时前
Selector的用法
人工智能·python·tensorflow
霖0017 小时前
神经网络项目--基于FPGA的AI简易项目(1-9图片数字识别)
人工智能·pytorch·深度学习·神经网络·机器学习·fpga开发
神经星星17 小时前
英伟达实现原子级蛋白质设计突破,高精度生成多达800个残基的蛋白质
人工智能·深度学习·机器学习