MLP实现fashion_mnist数据集分类(2)-函数式API构建模型(tensorflow)

使用函数式API构建模型,使得模型可以处理多输入多输出。

1、查看tensorflow版本

python 复制代码
import tensorflow as tf

print('Tensorflow Version:{}'.format(tf.__version__))
print(tf.config.list_physical_devices())

2、fashion_mnist数据集分类模型

2.1 使用Sequential构建模型

python 复制代码
from keras import Sequential
from keras.layers import Flatten,Dense,Dropout
from keras import Input

model = Sequential()
model.add(Input(shape=(28,28)))
model.add(Flatten())
model.add(Dense(units=256,kernel_initializer='normal',activation='relu'))
model.add(Dropout(rate=0.1))
model.add(Dense(units=64,kernel_initializer='normal',activation='relu'))
model.add(Dropout(rate=0.1))
model.add(Dense(units=10,kernel_initializer='normal',activation='softmax'))
model.summary()

2.2 使用函数式API构建模型

python 复制代码
from keras.layers import Flatten,Dense,Dropout
from keras import Input,Model

input = Input(shape=(28,28))
x = Flatten()(input)
x = Dense(units=256,kernel_initializer='normal',activation='relu')(x)
x = Dropout(rate=0.1)(x)
x = Dense(units=64,kernel_initializer='normal',activation='relu')(x)
x = Dropout(rate=0.1)(x)
output = Dense(units=10,kernel_initializer='normal',activation='softmax')(x)
model = Model(inputs=input, outputs=output)
model.summary()

可以看到两个模型的结构是一样的,编译和训练也是一样的。

3、使用函数式API搭建多输入多输出模型

两个输入一个输出,对比两个图片是否一样。

python 复制代码
from keras.layers import Flatten,Dense,Dropout
from keras import Input,Model
import keras

input1 = Input(shape=(28,28))
input2 = Input(shape=(28,28))
x1 = Flatten()(input1)
x2 = Flatten()(input2)
x = keras.layers.concatenate([x1,x2])
x = Dense(units=256,kernel_initializer='normal',activation='relu')(x)
x = Dropout(rate=0.1)(x)
x = Dense(units=64,kernel_initializer='normal',activation='relu')(x)
x = Dropout(rate=0.1)(x)
output = Dense(units=1,kernel_initializer='normal',activation='sigmoid')(x)
model = Model(inputs=[input1,input2], outputs=output) # 两个输入,一个输出
model.summary()
相关推荐
爱喝可乐的老王1 分钟前
深度学习初认识
人工智能·深度学习
孤狼warrior2 小时前
图像生成 Stable Diffusion模型架构介绍及使用代码 附数据集批量获取
人工智能·python·深度学习·stable diffusion·cnn·transformer·stablediffusion
努力毕业的小土博^_^2 小时前
【AI课程领学】第十二课 · 超参数设定与网络训练(课时1) 网络超参数设定:从“要调什么”到“怎么系统地调”(含 PyTorch 可复用模板)
人工智能·pytorch·python·深度学习·神经网络·机器学习
Pith_2 小时前
模式识别与机器学习复习笔记(下-深度学习篇)
笔记·深度学习·机器学习
shengMio3 小时前
周报——2026.1.19-1.25
深度学习·论文写作
高洁013 小时前
数字孪生应用于特种设备领域的技术难点
人工智能·python·深度学习·机器学习·知识图谱
Piar1231sdafa3 小时前
基于YOLOv26的海洋鱼类识别与检测系统深度学习训练数据集Python实现_1
python·深度学习·yolo
汗流浃背了吧,老弟!4 小时前
基于 BERT 模型实现命名实体识别(NER)任务
人工智能·深度学习·bert
楚来客4 小时前
AI基础概念之十三:Transformer 算法结构相比传统神经网络的改进
深度学习·神经网络·transformer
apocalypsx4 小时前
深度学习-使用块的网络VGG
人工智能·深度学习