MLP实现fashion_mnist数据集分类(2)-函数式API构建模型(tensorflow)

使用函数式API构建模型,使得模型可以处理多输入多输出。

1、查看tensorflow版本

python 复制代码
import tensorflow as tf

print('Tensorflow Version:{}'.format(tf.__version__))
print(tf.config.list_physical_devices())

2、fashion_mnist数据集分类模型

2.1 使用Sequential构建模型

python 复制代码
from keras import Sequential
from keras.layers import Flatten,Dense,Dropout
from keras import Input

model = Sequential()
model.add(Input(shape=(28,28)))
model.add(Flatten())
model.add(Dense(units=256,kernel_initializer='normal',activation='relu'))
model.add(Dropout(rate=0.1))
model.add(Dense(units=64,kernel_initializer='normal',activation='relu'))
model.add(Dropout(rate=0.1))
model.add(Dense(units=10,kernel_initializer='normal',activation='softmax'))
model.summary()

2.2 使用函数式API构建模型

python 复制代码
from keras.layers import Flatten,Dense,Dropout
from keras import Input,Model

input = Input(shape=(28,28))
x = Flatten()(input)
x = Dense(units=256,kernel_initializer='normal',activation='relu')(x)
x = Dropout(rate=0.1)(x)
x = Dense(units=64,kernel_initializer='normal',activation='relu')(x)
x = Dropout(rate=0.1)(x)
output = Dense(units=10,kernel_initializer='normal',activation='softmax')(x)
model = Model(inputs=input, outputs=output)
model.summary()

可以看到两个模型的结构是一样的,编译和训练也是一样的。

3、使用函数式API搭建多输入多输出模型

两个输入一个输出,对比两个图片是否一样。

python 复制代码
from keras.layers import Flatten,Dense,Dropout
from keras import Input,Model
import keras

input1 = Input(shape=(28,28))
input2 = Input(shape=(28,28))
x1 = Flatten()(input1)
x2 = Flatten()(input2)
x = keras.layers.concatenate([x1,x2])
x = Dense(units=256,kernel_initializer='normal',activation='relu')(x)
x = Dropout(rate=0.1)(x)
x = Dense(units=64,kernel_initializer='normal',activation='relu')(x)
x = Dropout(rate=0.1)(x)
output = Dense(units=1,kernel_initializer='normal',activation='sigmoid')(x)
model = Model(inputs=[input1,input2], outputs=output) # 两个输入,一个输出
model.summary()
相关推荐
小关会打代码10 小时前
深度学习之YOLO系列YOLOv1
人工智能·深度学习·yolo
一车小面包11 小时前
Transformer Decoder 中序列掩码(Sequence Mask / Look-ahead Mask)
人工智能·深度学习·transformer
渡我白衣13 小时前
深度学习入门(一)——从神经元到损失函数,一步步理解前向传播(下)
人工智能·深度学习·神经网络
小虎鲸0014 小时前
PyTorch的安装与使用
人工智能·pytorch·python·深度学习
CM莫问15 小时前
推荐算法之粗排
深度学习·算法·机器学习·数据挖掘·排序算法·推荐算法·粗排
ccut 第一混17 小时前
c# 使用yolov5模型
人工智能·深度学习
七元权17 小时前
论文阅读-FoundationStereo
论文阅读·深度学习·计算机视觉·零样本·基础模型·双目深度估计
智驱力人工智能17 小时前
使用手机检测的智能视觉分析技术与应用 加油站使用手机 玩手机检测
深度学习·算法·目标检测·智能手机·视觉检测·边缘计算
姚瑞南17 小时前
【AI 风向标】四种深度学习算法(CNN、RNN、GAN、RL)的通俗解释
人工智能·深度学习·算法
渡我白衣18 小时前
深度学习入门(一)——从神经元到损失函数,一步步理解前向传播(上)
人工智能·深度学习·学习