路由Routing
完成第一步Query Translation之后就要进入第二步Routing,Routing的意义在于根据不同的问题类型走不同的策略,比如关系型数据库走nl2sql查询,向量查询走索引向量数据库查询。
逻辑和语义路由 Logical and Semantic routing
使用函数调用进行分类
参考资料:
python.langchain.com/docs/use_ca...
python
1from typing import Literal
2
3from langchain_core.prompts import ChatPromptTemplate
4from langchain_core.pydantic_v1 import BaseModel, Field
5from langchain_openai import ChatOpenAI
6
7# Data model
8class RouteQuery(BaseModel):
9 """Route a user query to the most relevant datasource."""
10
11 datasource: Literal["python_docs", "js_docs", "golang_docs"] = Field(
12 ...,
13 description="Given a user question choose which datasource would be most relevant for answering their question",
14 )
15
16# LLM with function call
17llm = ChatOpenAI(model="gpt-3.5-turbo-0125", temperature=0)
18structured_llm = llm.with_structured_output(RouteQuery)
19
20# Prompt
21system = """You are an expert at routing a user question to the appropriate data source.
22
23Based on the programming language the question is referring to, route it to the relevant data source."""
24
25prompt = ChatPromptTemplate.from_messages(
26 [
27 ("system", system),
28 ("human", "{question}"),
29 ]
30)
31
32# Define router
33router = prompt | structured_llm
注意:我们使用函数调用来产生结构化输出。
python
1question = """Why doesn't the following code work:
2
3from langchain_core.prompts import ChatPromptTemplate
4
5prompt = ChatPromptTemplate.from_messages(["human", "speak in {language}"])
6prompt.invoke("french")
7"""
8
9result = router.invoke({"question": question})
10#result.datasource -> 'python_docs'
11def choose_route(result):
12 if "python_docs" in result.datasource.lower():
13 ### Logic here
14 return "chain for python_docs"
15 elif "js_docs" in result.datasource.lower():
16 ### Logic here
17 return "chain for js_docs"
18 else:
19 ### Logic here
20 return "golang_docs"
21
22from langchain_core.runnables import RunnableLambda
23
24full_chain = router | RunnableLambda(choose_route)
25full_chain.invoke({"question": question})
26# 'chain for python_docs'
27
语义路由 Semantic routing
参考资料:
ini
1from langchain.utils.math import cosine_similarity
2from langchain_core.output_parsers import StrOutputParser
3from langchain_core.prompts import PromptTemplate
4from langchain_core.runnables import RunnableLambda, RunnablePassthrough
5from langchain_openai import ChatOpenAI, OpenAIEmbeddings
6
7# Two prompts
8physics_template = """You are a very smart physics professor. \
9You are great at answering questions about physics in a concise and easy to understand manner. \
10When you don't know the answer to a question you admit that you don't know.
11
12Here is a question:
13{query}"""
14
15math_template = """You are a very good mathematician. You are great at answering math questions. \
16You are so good because you are able to break down hard problems into their component parts, \
17answer the component parts, and then put them together to answer the broader question.
18
19Here is a question:
20{query}"""
21
22# Embed prompts
23embeddings = OpenAIEmbeddings()
24prompt_templates = [physics_template, math_template]
25prompt_embeddings = embeddings.embed_documents(prompt_templates)
26
27# Route question to prompt
28def prompt_router(input):
29 # Embed question
30 query_embedding = embeddings.embed_query(input["query"])
31 # Compute similarity
32 similarity = cosine_similarity([query_embedding], prompt_embeddings)[0]
33 most_similar = prompt_templates[similarity.argmax()]
34 # Chosen prompt
35 print("Using MATH" if most_similar == math_template else "Using PHYSICS")
36 return PromptTemplate.from_template(most_similar)
37
38
39chain = (
40 {"query": RunnablePassthrough()}
41 | RunnableLambda(prompt_router)
42 | ChatOpenAI()
43 | StrOutputParser()
44)
45
46print(chain.invoke("What's a black hole"))
输出:
vbnet
1Using PHYSICS
2A black hole is a region in space where the gravitational pull is so strong that nothing, not even light, can escape from it. It is formed when a massive star collapses in on itself. The boundary surrounding a black hole is called the event horizon. Beyond the event horizon, the gravitational pull is so intense that even time and space are distorted. Black holes are some of the most mysterious and fascinating objects in the universe.
结构化查询 Query Construction
参考资料
元数据过滤器的查询结构 Query structuring for metadata filters
许多矢量存储包含元数据字段。这使得可以根据元数据过滤特定块成为可能。
python
1from langchain_community.document_loaders import YoutubeLoader
2
3docs = YoutubeLoader.from_youtube_url(
4 "https://www.youtube.com/watch?v=pbAd8O1Lvm4", add_video_info=True
5).load()
6
7docs[0].metadata
输出
rust
1{'source': 'pbAd8O1Lvm4',
2 'title': 'Self-reflective RAG with LangGraph: Self-RAG and CRAG',
3 'description': 'Unknown',
4 'view_count': 11922,
5 'thumbnail_url': 'https://i.ytimg.com/vi/pbAd8O1Lvm4/hq720.jpg',
6 'publish_date': '2024-02-07 00:00:00',
7 'length': 1058,
8 'author': 'LangChain'}
假设我们已经建立了一个索引:
允许我们对每个文档的内容和标题进行非结构化搜索 并对查看次数、发布日期和长度使用范围过滤。
我们希望将自然语言转换为结构化搜索查询。我们可以为结构化搜索查询定义一个架构。
python
1import datetime
2from typing import Literal, Optional, Tuple
3from langchain_core.pydantic_v1 import BaseModel, Field
4
5class TutorialSearch(BaseModel):
6 """Search over a database of tutorial videos about a software library."""
7
8 content_search: str = Field(
9 ...,
10 description="Similarity search query applied to video transcripts.",
11 )
12 title_search: str = Field(
13 ...,
14 description=(
15 "Alternate version of the content search query to apply to video titles. "
16 "Should be succinct and only include key words that could be in a video "
17 "title."
18 ),
19 )
20 min_view_count: Optional[int] = Field(
21 None,
22 description="Minimum view count filter, inclusive. Only use if explicitly specified.",
23 )
24 max_view_count: Optional[int] = Field(
25 None,
26 description="Maximum view count filter, exclusive. Only use if explicitly specified.",
27 )
28 earliest_publish_date: Optional[datetime.date] = Field(
29 None,
30 description="Earliest publish date filter, inclusive. Only use if explicitly specified.",
31 )
32 latest_publish_date: Optional[datetime.date] = Field(
33 None,
34 description="Latest publish date filter, exclusive. Only use if explicitly specified.",
35 )
36 min_length_sec: Optional[int] = Field(
37 None,
38 description="Minimum video length in seconds, inclusive. Only use if explicitly specified.",
39 )
40 max_length_sec: Optional[int] = Field(
41 None,
42 description="Maximum video length in seconds, exclusive. Only use if explicitly specified.",
43 )
44
45 def pretty_print(self) -> None:
46 for field in self.__fields__:
47 if getattr(self, field) is not None and getattr(self, field) != getattr(
48 self.__fields__[field], "default", None
49 ):
50 print(f"{field}: {getattr(self, field)}")
51
52from langchain_core.prompts import ChatPromptTemplate
53from langchain_openai import ChatOpenAI
54
55system = """You are an expert at converting user questions into database queries. \
56You have access to a database of tutorial videos about a software library for building LLM-powered applications. \
57Given a question, return a database query optimized to retrieve the most relevant results.
58
59If there are acronyms or words you are not familiar with, do not try to rephrase them."""
60prompt = ChatPromptTemplate.from_messages(
61 [
62 ("system", system),
63 ("human", "{question}"),
64 ]
65)
66llm = ChatOpenAI(model="gpt-3.5-turbo-0125", temperature=0)
67structured_llm = llm.with_structured_output(TutorialSearch)
68query_analyzer = prompt | structured_llm
69query_analyzer.invoke({"question": "rag from scratch"}).pretty_print()
输出:
csharp
1content_search: rag from scratch
2title_search: rag from scratch
arduino
1query_analyzer.invoke(
2 {"question": "videos on chat langchain published in 2023"}
3).pretty_print()
输出:
yaml
1content_search: chat langchain
2title_search: 2023
3earliest_publish_date: 2023-01-01
4latest_publish_date: 2024-01-01
arduino
1query_analyzer.invoke(
2 {"question": "videos that are focused on the topic of chat langchain that are published before 2024"}
3).pretty_print()
输出:
yaml
1content_search: chat langchain
2title_search: chat langchain
3earliest_publish_date: 2024-01-01
arduino
1query_analyzer.invoke(
2 {
3 "question": "how to use multi-modal models in an agent, only videos under 5 minutes"
4 }
5).pretty_print()
输出:
makefile
1content_search: multi-modal models agent
2title_search: multi-modal models agent
3max_length_sec: 300
索引Indexing
Multi-representation Indexing
参考资料:
Docs:
blog.langchain.dev/semi-struct...
python.langchain.com/docs/module...
Paper:
ini
1from langchain_community.document_loaders import WebBaseLoader
2from langchain_text_splitters import RecursiveCharacterTextSplitter
3
4loader = WebBaseLoader("https://lilianweng.github.io/posts/2023-06-23-agent/")
5docs = loader.load()
6
7loader = WebBaseLoader("https://lilianweng.github.io/posts/2024-02-05-human-data-quality/")
8docs.extend(loader.load())
9
10import uuid
11
12from langchain_core.documents import Document
13from langchain_core.output_parsers import StrOutputParser
14from langchain_core.prompts import ChatPromptTemplate
15from langchain_openai import ChatOpenAI
16
17chain = (
18 {"doc": lambda x: x.page_content}
19 | ChatPromptTemplate.from_template("Summarize the following document:\n\n{doc}")
20 | ChatOpenAI(model="gpt-3.5-turbo",max_retries=0)
21 | StrOutputParser()
22)
23
24summaries = chain.batch(docs, {"max_concurrency": 5})
25
26from langchain.storage import InMemoryByteStore
27from langchain_openai import OpenAIEmbeddings
28from langchain_community.vectorstores import Chroma
29from langchain.retrievers.multi_vector import MultiVectorRetriever
30
31# The vectorstore to use to index the child chunks
32vectorstore = Chroma(collection_name="summaries",
33 embedding_function=OpenAIEmbeddings())
34
35# The storage layer for the parent documents
36store = InMemoryByteStore()
37id_key = "doc_id"
38
39# The retriever
40retriever = MultiVectorRetriever(
41 vectorstore=vectorstore,
42 byte_store=store,
43 id_key=id_key,
44)
45doc_ids = [str(uuid.uuid4()) for _ in docs]
46
47# Docs linked to summaries
48summary_docs = [
49 Document(page_content=s, metadata={id_key: doc_ids[i]})
50 for i, s in enumerate(summaries)
51]
52
53# Add
54retriever.vectorstore.add_documents(summary_docs)
55retriever.docstore.mset(list(zip(doc_ids, docs)))
56
57query = "Memory in agents"
58sub_docs = vectorstore.similarity_search(query,k=1)
59sub_docs[0]
输出:
vbnet
1Document(page_content='The document discusses the concept of building autonomous agents powered by Large Language Models (LLMs) as their core controllers. It covers components such as planning, memory, and tool use, along with case studies and proof-of-concept examples like AutoGPT and GPT-Engineer. Challenges like finite context length, planning difficulties, and reliability of natural language interfaces are also highlighted. The document provides references to related research papers and offers a comprehensive overview of LLM-powered autonomous agents.', metadata={'doc_id': 'cf31524b-fe6a-4b28-a980-f5687c9460ea'})
ini
1retrieved_docs = retriever.get_relevant_documents(query,n_results=1)
2retrieved_docs[0].page_content[0:500]
输出:
ini
1Number of requested results 4 is greater than number of elements in index 2, updating n_results = 2
swift
1"\n\n\n\n\n\nLLM Powered Autonomous Agents | Lil'Log\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\nLil'Log\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\nPosts\n\n\n\n\nArchive\n\n\n\n\nSearch\n\n\n\n\nTags\n\n\n\n\nFAQ\n\n\n\n\nemojisearch.app\n\n\n\n\n\n\n\n\n\n LLM Powered Autonomous Agents\n \nDate: June 23, 2023 | Estimated Reading Time: 31 min | Author: Lilian Weng\n\n\n \n\n\nTable of Contents\n\n\n\nAgent System Overview\n\nComponent One: Planning\n\nTask Decomposition\n\nSelf-Reflection\n\n\nComponent Two: Memory\n\nTypes of Memory\n\nMaximum Inner Product Search (MIPS)\n\n"
RAPTOR
参考资料:
Deep dive video:
www.youtube.com/watch?v=jbG...
Paper:
Full code:
ColBERT
RAGatouille 让 ColBERT 的使用变得非常简单。 ColBERT 为段落中的每个标记生成受上下文影响的向量。 ColBERT 类似地为查询中的每个标记生成向量。然后,每个文档的分数是每个查询嵌入与任何文档嵌入的最大相似度之和:
python
1from ragatouille import RAGPretrainedModel
2RAG = RAGPretrainedModel.from_pretrained("colbert-ir/colbertv2.0")
3
4import requests
5
6def get_wikipedia_page(title: str):
7 """
8 Retrieve the full text content of a Wikipedia page.
9
10 :param title: str - Title of the Wikipedia page.
11 :return: str - Full text content of the page as raw string.
12 """
13 # Wikipedia API endpoint
14 URL = "https://en.wikipedia.org/w/api.php"
15
16 # Parameters for the API request
17 params = {
18 "action": "query",
19 "format": "json",
20 "titles": title,
21 "prop": "extracts",
22 "explaintext": True,
23 }
24
25 # Custom User-Agent header to comply with Wikipedia's best practices
26 headers = {"User-Agent": "RAGatouille_tutorial/0.0.1 (ben@clavie.eu)"}
27
28 response = requests.get(URL, params=params, headers=headers)
29 data = response.json()
30
31 # Extracting page content
32 page = next(iter(data["query"]["pages"].values()))
33 return page["extract"] if "extract" in page else None
34
35full_document = get_wikipedia_page("Hayao_Miyazaki")
36
37RAG.index(
38 collection=[full_document],
39 index_name="Miyazaki-123",
40 max_document_length=180,
41 split_documents=True,
42)
ini
1results = RAG.search(query="What animation studio did Miyazaki found?", k=3)
2results
arduino
1retriever = RAG.as_langchain_retriever(k=3)
2retriever.invoke("What animation studio did Miyazaki found?")
Retrieval
Re-ranking
ini
1#### INDEXING ####
2
3# Load blog
4import bs4
5from langchain_community.document_loaders import WebBaseLoader
6loader = WebBaseLoader(
7 web_paths=("https://lilianweng.github.io/posts/2023-06-23-agent/",),
8 bs_kwargs=dict(
9 parse_only=bs4.SoupStrainer(
10 class_=("post-content", "post-title", "post-header")
11 )
12 ),
13)
14blog_docs = loader.load()
15
16# Split
17from langchain.text_splitter import RecursiveCharacterTextSplitter
18text_splitter = RecursiveCharacterTextSplitter.from_tiktoken_encoder(
19 chunk_size=300,
20 chunk_overlap=50)
21
22# Make splits
23splits = text_splitter.split_documents(blog_docs)
24
25# Index
26from langchain_openai import OpenAIEmbeddings
27# from langchain_cohere import CohereEmbeddings
28from langchain_community.vectorstores import Chroma
29vectorstore = Chroma.from_documents(documents=splits,
30 # embedding=CohereEmbeddings()
31 embedding=OpenAIEmbeddings())
32
33
34retriever = vectorstore.as_retriever()
35
36from langchain.prompts import ChatPromptTemplate
37
38# RAG-Fusion
39template = """You are a helpful assistant that generates multiple search queries based on a single input query. \n
40Generate multiple search queries related to: {question} \n
41Output (4 queries):"""
42prompt_rag_fusion = ChatPromptTemplate.from_template(template)
43
44from langchain_core.output_parsers import StrOutputParser
45from langchain_openai import ChatOpenAI
46
47generate_queries = (
48 prompt_rag_fusion
49 | ChatOpenAI(temperature=0)
50 | StrOutputParser()
51 | (lambda x: x.split("\n"))
52)
53
54from langchain.load import dumps, loads
55
56def reciprocal_rank_fusion(results: list[list], k=60):
57 """ Reciprocal_rank_fusion that takes multiple lists of ranked documents
58 and an optional parameter k used in the RRF formula """
59
60 # Initialize a dictionary to hold fused scores for each unique document
61 fused_scores = {}
62
63 # Iterate through each list of ranked documents
64 for docs in results:
65 # Iterate through each document in the list, with its rank (position in the list)
66 for rank, doc in enumerate(docs):
67 # Convert the document to a string format to use as a key (assumes documents can be serialized to JSON)
68 doc_str = dumps(doc)
69 # If the document is not yet in the fused_scores dictionary, add it with an initial score of 0
70 if doc_str not in fused_scores:
71 fused_scores[doc_str] = 0
72 # Retrieve the current score of the document, if any
73 previous_score = fused_scores[doc_str]
74 # Update the score of the document using the RRF formula: 1 / (rank + k)
75 fused_scores[doc_str] += 1 / (rank + k)
76
77 # Sort the documents based on their fused scores in descending order to get the final reranked results
78 reranked_results = [
79 (loads(doc), score)
80 for doc, score in sorted(fused_scores.items(), key=lambda x: x[1], reverse=True)
81 ]
82
83 # Return the reranked results as a list of tuples, each containing the document and its fused score
84 return reranked_results
85
86question = "What is task decomposition for LLM agents?"
87retrieval_chain_rag_fusion = generate_queries | retriever.map() | reciprocal_rank_fusion
88docs = retrieval_chain_rag_fusion.invoke({"question": question})
89len(docs)
ini
1from operator import itemgetter
2from langchain_core.runnables import RunnablePassthrough
3
4# RAG
5template = """Answer the following question based on this context:
6
7{context}
8
9Question: {question}
10"""
11
12prompt = ChatPromptTemplate.from_template(template)
13
14llm = ChatOpenAI(temperature=0)
15
16final_rag_chain = (
17 {"context": retrieval_chain_rag_fusion,
18 "question": itemgetter("question")}
19 | prompt
20 | llm
21 | StrOutputParser()
22)
23
24final_rag_chain.invoke({"question":question})
输出:
vbnet
1'Task decomposition for LLM agents involves breaking down large tasks into smaller, manageable subgoals. This enables the agent to efficiently handle complex tasks by dividing them into smaller and simpler steps. Task decomposition can be achieved through techniques like Chain of Thought (CoT) and Tree of Thoughts, which prompt the model to think step by step and explore multiple reasoning possibilities at each step. Additionally, task decomposition can be done using simple prompting, task-specific instructions, or with human inputs.'
ini
1from langchain_community.llms import Cohere
2from langchain.retrievers import ContextualCompressionRetriever
3from langchain.retrievers.document_compressors import CohereRerank
4
5from langchain.retrievers.document_compressors import CohereRerank
6
7retriever = vectorstore.as_retriever(search_kwargs={"k": 10})
8
9# Re-rank
10compressor = CohereRerank()
11compression_retriever = ContextualCompressionRetriever(
12 base_compressor=compressor, base_retriever=retriever
13)
14
15compressed_docs = compression_retriever.get_relevant_documents(question)
Retrieval (CRAG)
参考资料:
1Deep Dive
www.youtube.com/watch?v=E2s...
1Notebooks
Generation
Retrieval (Self-RAG)
参考资料:
Impact of long context
参考资料:
1Deep dive
www.youtube.com/watch?v=SsH...
1Slides
原创声明:本文为本人原创作品,首发于AI ONES wuxiongwei.com,如果转载,请保留本文链接,谢谢。