吴恩达2022机器学习专项课程(一)7.2 逻辑回归的简化成本函数课后实验 Lab5

问题预览/关键词

二分类问题的训练集(多特征)

每行训练样本有两个特征和一个取值只有0或1的目标变量。

绘制训练集数据的散点图

自定义plot_data()

Python实现逻辑回归的成本函数

自定义sigmoid()

调用成本函数

设置w,b的值,调用函数并计算。

不同的w,b,绘制逻辑回归模型的决策边界

由6.3课可知,决策边界公式:wx+b=0,示例为多特征,因此w0x0+w1x1+b=0。这里设置两个w都为1,蓝色线条对应b=-3,紫色线条对应b=-4。由图可知,紫色代表的w,b参数构建的模型预测效果差。

验证哪条决策边界效果好

b=-4的成本函数值更高,对应了上图结论:紫色决策边界代表的w,b构建的模型预测效果差。

总结

首先我们根据训练集数据绘制了散点图,然后根据不同参数,尝试了两种决策边界的绘制。经过可视化观察和成本函数计算的双重验证,我们确定了其中一种参数绘制的决策边界效果较好,因此使用这种参数构建的模型预测效果也会更好。

相关推荐
光的方向_11 分钟前
ChatGPT提示工程入门 Prompt 03-迭代式提示词开发
人工智能·chatgpt·prompt·aigc
盼小辉丶16 分钟前
PyTorch实战(29)——使用TorchServe部署PyTorch模型
人工智能·pytorch·深度学习·模型部署
郝学胜-神的一滴17 分钟前
在Vibe Coding时代,学习设计模式与软件架构
人工智能·学习·设计模式·架构·软件工程
AI英德西牛仔19 分钟前
AI输出无乱码
人工智能
艾醒(AiXing-w)20 分钟前
技术速递——通义千问 3.5 深度横评:纸面超越 GPT‑5.2,实测差距在哪?
人工智能·python·语言模型
xiangzhihong821 分钟前
Gemini 3.1 Pro血洗Claude与GPT,12项基准测试第一!
人工智能
爱跑步的程序员~28 分钟前
Spring AI会话记忆使用与底层实现
人工智能·spring
ppppppatrick29 分钟前
【深度学习基础篇】线性回归代码解析
人工智能·深度学习·线性回归
肾透侧视攻城狮30 分钟前
《工业级实战:TensorFlow房价预测模型开发、优化与问题排查指南》
人工智能·深度学习·tensorfl波士顿房价预测·调整网络结构·使用k折交叉验证·添加正则化防止过拟合·tensorflow之回归问题
王解42 分钟前
第四篇:万能接口 —— 插件系统设计与实现
人工智能·nanobot