吴恩达2022机器学习专项课程(一)7.2 逻辑回归的简化成本函数课后实验 Lab5

问题预览/关键词

二分类问题的训练集(多特征)

每行训练样本有两个特征和一个取值只有0或1的目标变量。

绘制训练集数据的散点图

自定义plot_data()

Python实现逻辑回归的成本函数

自定义sigmoid()

调用成本函数

设置w,b的值,调用函数并计算。

不同的w,b,绘制逻辑回归模型的决策边界

由6.3课可知,决策边界公式:wx+b=0,示例为多特征,因此w0x0+w1x1+b=0。这里设置两个w都为1,蓝色线条对应b=-3,紫色线条对应b=-4。由图可知,紫色代表的w,b参数构建的模型预测效果差。

验证哪条决策边界效果好

b=-4的成本函数值更高,对应了上图结论:紫色决策边界代表的w,b构建的模型预测效果差。

总结

首先我们根据训练集数据绘制了散点图,然后根据不同参数,尝试了两种决策边界的绘制。经过可视化观察和成本函数计算的双重验证,我们确定了其中一种参数绘制的决策边界效果较好,因此使用这种参数构建的模型预测效果也会更好。

相关推荐
梵得儿SHI6 分钟前
(第一篇)Spring AI 核心技术攻坚:RAG 全流程落地指南|从理论到实战构建本地知识库问答系统
人工智能·spring·大模型落地·增强生成(rag)技术·大模型存在的知识滞后·大模型存在的知识幻觉·提升回答可信度
张彦峰ZYF6 分钟前
AI赋能原则3解读思考:可得性时代-AI 正在重写人类能力结构的未来
人工智能·ai·ai赋能与落地
CoovallyAIHub7 分钟前
AI 项目如何避免“烂尾”?怎么选择才能让AI项目长期奔跑?
人工智能·算法·计算机视觉
hudawei9969 分钟前
词嵌入中语料库矩阵和句子矩阵是怎样的?
人工智能·ai·自然语言处理·词嵌入·word embedding·词向量·语义理解
Mxsoft6199 分钟前
某次数据分析偏差,发现时区设置错,修正时间戳救场!
人工智能
努力也学不会java11 分钟前
【docker】Docker Register(镜像仓库)
运维·人工智能·机器学习·docker·容器
m0_6501082411 分钟前
OLMo 2:全开放语言模型的技术突破与实践
论文阅读·人工智能·olmo 2·全开源多模态大模型·全链路开放·训练稳定性
Mintopia12 分钟前
🧠 AIGC技术标准制定:Web行业协同的必要性与难点
人工智能·前端框架·trae
轻竹办公PPT12 分钟前
AI一键生成年终总结PPT
人工智能·python·powerpoint
是Dream呀12 分钟前
昇腾平台 PyTorch 迁移实操:从环境搭建到精度达标的完整步骤
人工智能·pytorch·python·昇腾