吴恩达2022机器学习专项课程(一)7.2 逻辑回归的简化成本函数课后实验 Lab5

问题预览/关键词

二分类问题的训练集(多特征)

每行训练样本有两个特征和一个取值只有0或1的目标变量。

绘制训练集数据的散点图

自定义plot_data()

Python实现逻辑回归的成本函数

自定义sigmoid()

调用成本函数

设置w,b的值,调用函数并计算。

不同的w,b,绘制逻辑回归模型的决策边界

由6.3课可知,决策边界公式:wx+b=0,示例为多特征,因此w0x0+w1x1+b=0。这里设置两个w都为1,蓝色线条对应b=-3,紫色线条对应b=-4。由图可知,紫色代表的w,b参数构建的模型预测效果差。

验证哪条决策边界效果好

b=-4的成本函数值更高,对应了上图结论:紫色决策边界代表的w,b构建的模型预测效果差。

总结

首先我们根据训练集数据绘制了散点图,然后根据不同参数,尝试了两种决策边界的绘制。经过可视化观察和成本函数计算的双重验证,我们确定了其中一种参数绘制的决策边界效果较好,因此使用这种参数构建的模型预测效果也会更好。

相关推荐
Fine姐24 分钟前
数据挖掘 4.1~4.7 机器学习性能评估参数
人工智能·机器学习·数据挖掘
无规则ai37 分钟前
动手学深度学习(pytorch版):第六章节—卷积神经网络(1)从全连接层到卷积
人工智能·pytorch·python·深度学习·cnn
wenzhangli71 小时前
Qoder初体验:从下载到运行OneCode-RAD的完整实战指南
人工智能·开源
心动啊1211 小时前
支持向量机
算法·机器学习·支持向量机
计算机源码社1 小时前
计算机毕设选题推荐 基于Spark的家庭能源消耗智能分析与可视化系统 基于机器学习的家庭能源消耗预测与可视化系统源码
大数据·机器学习·数据分析·spark·毕业设计·课程设计·毕业设计源码
MansFlower2 小时前
静默发布:DeepSeek-V3.1
人工智能·开源
mit6.8242 小时前
[RestGPT] OpenAPI规范(OAS)
人工智能·python
悦人楼3 小时前
深入探讨集成学习:Bagging与Boosting的核心原理与实践
机器学习·集成学习·boosting
算家计算3 小时前
一句话生成爆款视频!GPT-5赋能Agent,视频创作进入智能体时代
人工智能·aigc·agent
算家计算3 小时前
使用指南 | Coze Studio 一站式AI智能体开发平台:低代码+多模型+RAG,快速打造你的专业级 AI Agent!
人工智能·agent·coze