吴恩达2022机器学习专项课程(一)7.2 逻辑回归的简化成本函数课后实验 Lab5

问题预览/关键词

二分类问题的训练集(多特征)

每行训练样本有两个特征和一个取值只有0或1的目标变量。

绘制训练集数据的散点图

自定义plot_data()

Python实现逻辑回归的成本函数

自定义sigmoid()

调用成本函数

设置w,b的值,调用函数并计算。

不同的w,b,绘制逻辑回归模型的决策边界

由6.3课可知,决策边界公式:wx+b=0,示例为多特征,因此w0x0+w1x1+b=0。这里设置两个w都为1,蓝色线条对应b=-3,紫色线条对应b=-4。由图可知,紫色代表的w,b参数构建的模型预测效果差。

验证哪条决策边界效果好

b=-4的成本函数值更高,对应了上图结论:紫色决策边界代表的w,b构建的模型预测效果差。

总结

首先我们根据训练集数据绘制了散点图,然后根据不同参数,尝试了两种决策边界的绘制。经过可视化观察和成本函数计算的双重验证,我们确定了其中一种参数绘制的决策边界效果较好,因此使用这种参数构建的模型预测效果也会更好。

相关推荐
宁渡AI大模型几秒前
从生成内容角度介绍开源AI大模型
人工智能·ai·大模型·qwen
xier_ran31 分钟前
深度学习:Mini-Batch 梯度下降(Mini-Batch Gradient Descent)
人工智能·深度学习·batch
Microvision维视智造42 分钟前
变速箱阀芯上料易错漏?通用 2D 视觉方案高效破局,成汽车制造检测优选!
人工智能
AAA小肥杨43 分钟前
探索K8s与AI的结合:PyTorch训练任务在k8s上调度实践
人工智能·pytorch·docker·ai·云原生·kubernetes
飞哥数智坊1 小时前
TRAE Friends 落地济南!首场线下活动圆满结束
人工智能·trae·solo
m0_527653901 小时前
NVIDIA Orin NX使用Jetpack安装CUDA、cuDNN、TensorRT、VPI时的error及解决方法
linux·人工智能·jetpack·nvidia orin nx
wbzuo1 小时前
Clip:Learning Transferable Visual Models From Natural Language Supervision
论文阅读·人工智能·transformer
带土11 小时前
2. YOLOv5 搭建一个完整的目标检测系统核心步骤
人工智能·yolo·目标检测
生信大表哥1 小时前
贝叶斯共识聚类(BCC)
机器学习·数据挖掘·聚类
1***Q7842 小时前
PyTorch图像分割实战,U-Net模型训练与部署
人工智能·pytorch·python