吴恩达2022机器学习专项课程(一)7.2 逻辑回归的简化成本函数课后实验 Lab5

问题预览/关键词

二分类问题的训练集(多特征)

每行训练样本有两个特征和一个取值只有0或1的目标变量。

绘制训练集数据的散点图

自定义plot_data()

Python实现逻辑回归的成本函数

自定义sigmoid()

调用成本函数

设置w,b的值,调用函数并计算。

不同的w,b,绘制逻辑回归模型的决策边界

由6.3课可知,决策边界公式:wx+b=0,示例为多特征,因此w0x0+w1x1+b=0。这里设置两个w都为1,蓝色线条对应b=-3,紫色线条对应b=-4。由图可知,紫色代表的w,b参数构建的模型预测效果差。

验证哪条决策边界效果好

b=-4的成本函数值更高,对应了上图结论:紫色决策边界代表的w,b构建的模型预测效果差。

总结

首先我们根据训练集数据绘制了散点图,然后根据不同参数,尝试了两种决策边界的绘制。经过可视化观察和成本函数计算的双重验证,我们确定了其中一种参数绘制的决策边界效果较好,因此使用这种参数构建的模型预测效果也会更好。

相关推荐
老友@13 小时前
RAG 的诞生:为了让 AI 不再“乱编”
人工智能·搜索引擎·ai·语言模型·自然语言处理·rag
三条猫13 小时前
将3D CAD 模型结构树转换为图结构,用于训练CAD AI的思路
人工智能·3d·ai·cad·模型训练·图结构·结构树
攻城狮7号13 小时前
Meta开源SAM 3D,如何教会 AI “想象”三维世界
人工智能·开源大模型·sam 3d·2d变3d·meta大模型·3d 视觉ai
三七互娱后端团队13 小时前
告别“玄学”调参:DSPy 框架入门,让 AI 自动优化 AI 的提示词
人工智能·后端
三七互娱后端团队13 小时前
别再只用 Vector Search 了:手把手教你落地 GraphRAG(图谱增强检索)
人工智能·后端
Predestination王瀞潞13 小时前
Windows环境下Pytorch的配置
人工智能·pytorch·python
Christo313 小时前
AAAI-2024《Multi-Class Support Vector Machine with Maximizing Minimum Margin》
人工智能·算法·机器学习·支持向量机·数据挖掘
千里飞刀客13 小时前
aruco位姿检测
人工智能·opencv·计算机视觉
浪子不回头41513 小时前
AI机考-Transformers
人工智能
BAOYUCompany14 小时前
暴雨AI服务器点燃AGI蓝海市场
人工智能