Python词频统计

在Python中进行词频统计是一项基础的文本分析任务,通常涉及以下步骤:

  1. 文本预处理:包括去除标点符号、转换为小写、去除停用词等。
  2. 分词:将文本分割成单词或词汇。
  3. 统计词频:对分词后的结果进行计数。

以下是一个简单的Python脚本,使用collections模块中的Counter类来统计词频:

复制代码
import re
from collections import Counter

# 示例文本
text = "This is a sample sentence. This sentence is really just a sample."

# 文本预处理:去除标点符号并转换为小写
cleaned_text = re.sub(r'[^\w\s]', '', text).lower()

# 分词
words = cleaned_text.split()

# 统计词频
word_counts = Counter(words)

# 输出词频统计结果
print(word_counts)

# 如果需要按照词频排序
most_common_words = word_counts.most_common()
print(most_common_words)

在这个脚本中,我们首先使用正则表达式re.sub(r'[^\w\s]', '', text)来移除文本中的标点符号,然后使用lower()方法将所有文本转换为小写,以保证词频统计时不区分大小写。

split()方法用于将文本分割成单词列表,然后我们使用Counter来统计每个单词出现的次数。

Counter.most_common()方法可以返回一个包含单词及其对应频率的列表,按照频率从高到低排序。

如果你需要更复杂的文本处理,比如去除停用词(stop words),可以使用nltk库中的stopwords集合:

复制代码
import nltk
from nltk.corpus import stopwords
from nltk.tokenize import word_tokenize

nltk.download('punkt')
nltk.download('stopwords')

# 示例文本
text = "This is a sample sentence. This sentence is really just a sample."

# 文本预处理:去除标点符号、转换为小写,并分词
tokens = word_tokenize(text)
cleaned_tokens = [word.lower() for word in tokens if word.isalpha()]

# 去除停用词
stop_words = set(stopwords.words('english'))
filtered_tokens = [word for word in cleaned_tokens if word not in stop_words]

# 统计词频
word_counts = Counter(filtered_tokens)

# 输出词频统计结果
print(word_counts)
print(word_counts.most_common())

在这个例子中,我们首先使用nltk库的word_tokenize函数进行分词,然后去除停用词,并再次使用Counter进行词频统计。使用nltk.download('punkt')nltk.download('stopwords')确保我们已经下载了所需的分词和停用词数据集。

相关推荐
aini_lovee7 小时前
MATLAB基于小波技术的图像融合实现
开发语言·人工智能·matlab
少云清7 小时前
【金融项目实战】7_接口测试 _代码实现接口测试(重点)
python·金融项目实战
深蓝电商API7 小时前
爬虫IP封禁后的自动切换与检测机制
爬虫·python
R1nG8637 小时前
多线程安全设计 CANN Runtime关键数据结构的锁优化
开发语言·cann
m0_550024637 小时前
持续集成/持续部署(CI/CD) for Python
jvm·数据库·python
初次见面我叫泰隆7 小时前
Qt——5、Qt系统相关
开发语言·qt·客户端开发
亓才孓7 小时前
[Class的应用]获取类的信息
java·开发语言
开开心心就好7 小时前
AI人声伴奏分离工具,离线提取伴奏K歌用
java·linux·开发语言·网络·人工智能·电脑·blender
Never_Satisfied7 小时前
在JavaScript / HTML中,关于querySelectorAll方法
开发语言·javascript·html
B站_计算机毕业设计之家7 小时前
豆瓣电影数据采集分析推荐系统 | Python Vue Flask框架 LSTM Echarts多技术融合开发 毕业设计源码 计算机
vue.js·python·机器学习·flask·echarts·lstm·推荐算法