正则化回归

1. L1正则化

L1正则化是回归参数各个元素绝对值之和。

2. L2正则化

L2正则化是回归参数各个元素平方之和。

3.LOSS回归

线性回归加上L1正则化

4.岭回归

线性回归加上L2正则化

不断增大 L2 约束项参数 α,可以发现岭回归参数优化解不断靠近原点,如图 6 所示。注意,图 6 分图中的等高线为岭回归曲面 f(b1, b2)。当约束项参数 α 不断增大,f(b1, b2) 曲面中 L2 正则项 (正圆曲面) 影响力不断增强。参数 α 不断增大,f(b1, b2) 曲面等高线也从旋转椭圆渐渐变成正圆,最小值点也渐渐靠近 (收缩到) 原点。

图 8 所示为随着 α 增大,岭回归参数变化。可以发现,α 增大时,参数逐步最大限度接近 0,但是不等于 0。这一点和本章后文将介绍的套索回归和弹性网络回归截然不同。

5. 贝叶斯回归理解正则化

从贝叶斯回归角度理解正则化回归,可以将正则化项视为参数的先验分布 。正则化回归通过在损失

函数中加入先验分布,来约束模型参数的取值范围,从而避免过拟合和提高泛化能力。在贝叶斯回归中,先验分布可以通过经验知识或者领域知识来确定,这种方法可以更好地适应实际问题的复杂性和不确定性。因此,正则化回归可以看作是贝叶斯回归在参数估计中的一种特殊情况。

相关推荐
要努力啊啊啊2 小时前
YOLOv1 技术详解:正负样本划分与置信度设计
人工智能·深度学习·yolo·计算机视觉·目标跟踪
vlln3 小时前
【论文解读】OmegaPRM:MCTS驱动的自动化过程监督,赋能LLM数学推理新高度
人工智能·深度学习·神经网络·搜索引擎·transformer
sky丶Mamba3 小时前
如何编写高效的Prompt:从入门到精通
人工智能·prompt
chilavert3184 小时前
深入剖析AI大模型:Prompt 开发工具与Python API 调用与技术融合
人工智能·python·prompt
科技林总5 小时前
支持向量机:在混沌中划出最强边界
人工智能
陈佬昔没带相机5 小时前
基于 open-webui 搭建企业级知识库
人工智能·ollama·deepseek
Mallow Flowers6 小时前
Python训练营-Day31-文件的拆分和使用
开发语言·人工智能·python·算法·机器学习
AntBlack7 小时前
Python : AI 太牛了 ,撸了两个 Markdown 阅读器 ,谈谈使用感受
前端·人工智能·后端
leo__5207 小时前
matlab实现非线性Granger因果检验
人工智能·算法·matlab
struggle20257 小时前
Burn 开源程序是下一代深度学习框架,在灵活性、效率和可移植性方面毫不妥协
人工智能·python·深度学习·rust