正则化回归

1. L1正则化

L1正则化是回归参数各个元素绝对值之和。

2. L2正则化

L2正则化是回归参数各个元素平方之和。

3.LOSS回归

线性回归加上L1正则化

4.岭回归

线性回归加上L2正则化

不断增大 L2 约束项参数 α,可以发现岭回归参数优化解不断靠近原点,如图 6 所示。注意,图 6 分图中的等高线为岭回归曲面 f(b1, b2)。当约束项参数 α 不断增大,f(b1, b2) 曲面中 L2 正则项 (正圆曲面) 影响力不断增强。参数 α 不断增大,f(b1, b2) 曲面等高线也从旋转椭圆渐渐变成正圆,最小值点也渐渐靠近 (收缩到) 原点。

图 8 所示为随着 α 增大,岭回归参数变化。可以发现,α 增大时,参数逐步最大限度接近 0,但是不等于 0。这一点和本章后文将介绍的套索回归和弹性网络回归截然不同。

5. 贝叶斯回归理解正则化

从贝叶斯回归角度理解正则化回归,可以将正则化项视为参数的先验分布 。正则化回归通过在损失

函数中加入先验分布,来约束模型参数的取值范围,从而避免过拟合和提高泛化能力。在贝叶斯回归中,先验分布可以通过经验知识或者领域知识来确定,这种方法可以更好地适应实际问题的复杂性和不确定性。因此,正则化回归可以看作是贝叶斯回归在参数估计中的一种特殊情况。

相关推荐
爱打代码的小林3 分钟前
机器学习(TF-IDF)
人工智能·tf-idf
档案宝档案管理8 分钟前
权限分级+加密存储+操作追溯,筑牢会计档案安全防线
大数据·网络·人工智能·安全·档案·档案管理
数据光子8 分钟前
【YOLO数据集】国内交通信号检测
人工智能·python·安全·yolo·目标检测·目标跟踪
霍格沃兹测试开发学社测试人社区14 分钟前
GitLab 测试用例:实现 Web 场景批量自动化执行的方法
人工智能·智能体
Mintopia14 分钟前
🤖 AI 应用自主决策的可行性 — 一场从逻辑电路到灵魂选择的奇妙旅程
人工智能·aigc·全栈
百***787515 分钟前
2026 优化版 GPT-5.2 国内稳定调用指南:API 中转实操与成本优化
开发语言·人工智能·python
:mnong16 分钟前
辅助学习神经网络
人工智能·神经网络·学习
jinyeyiqi202617 分钟前
城市噪声监测设备技术解析及智慧城市应用方案 金叶仪器全场景适配的城市噪声监测设备
人工智能·智慧城市
光锥智能18 分钟前
蚂蚁阿福月活用户已达3000万,OpenAI跟进发布ChatGPT Health
人工智能·chatgpt
空山新雨后、21 分钟前
Masked AutoEncoder(MAE)详解:高 Mask 率如何造就强视觉表征
人工智能·深度学习·chatgpt·多模态