正则化回归

1. L1正则化

L1正则化是回归参数各个元素绝对值之和。

2. L2正则化

L2正则化是回归参数各个元素平方之和。

3.LOSS回归

线性回归加上L1正则化

4.岭回归

线性回归加上L2正则化

不断增大 L2 约束项参数 α,可以发现岭回归参数优化解不断靠近原点,如图 6 所示。注意,图 6 分图中的等高线为岭回归曲面 f(b1, b2)。当约束项参数 α 不断增大,f(b1, b2) 曲面中 L2 正则项 (正圆曲面) 影响力不断增强。参数 α 不断增大,f(b1, b2) 曲面等高线也从旋转椭圆渐渐变成正圆,最小值点也渐渐靠近 (收缩到) 原点。

图 8 所示为随着 α 增大,岭回归参数变化。可以发现,α 增大时,参数逐步最大限度接近 0,但是不等于 0。这一点和本章后文将介绍的套索回归和弹性网络回归截然不同。

5. 贝叶斯回归理解正则化

从贝叶斯回归角度理解正则化回归,可以将正则化项视为参数的先验分布 。正则化回归通过在损失

函数中加入先验分布,来约束模型参数的取值范围,从而避免过拟合和提高泛化能力。在贝叶斯回归中,先验分布可以通过经验知识或者领域知识来确定,这种方法可以更好地适应实际问题的复杂性和不确定性。因此,正则化回归可以看作是贝叶斯回归在参数估计中的一种特殊情况。

相关推荐
焦耳加热几秒前
阿德莱德大学Nat. Commun.:盐模板策略实现废弃塑料到单原子催化剂的高值转化,推动环境与能源催化应用
人工智能·算法·机器学习·能源·材料工程
深空数字孪生2 分钟前
储能调峰新实践:智慧能源平台如何保障风电消纳与电网稳定?
大数据·人工智能·物联网
wan5555cn8 分钟前
多张图片生成视频模型技术深度解析
人工智能·笔记·深度学习·算法·音视频
格林威1 小时前
机器视觉检测的光源基础知识及光源选型
人工智能·深度学习·数码相机·yolo·计算机视觉·视觉检测
今天也要学习吖2 小时前
谷歌nano banana官方Prompt模板发布,解锁六大图像生成风格
人工智能·学习·ai·prompt·nano banana·谷歌ai
Hello123网站2 小时前
glean-企业级AI搜索和知识发现平台
人工智能·产品运营·ai工具
AKAMAI2 小时前
Queue-it 为数十亿用户增强在线体验
人工智能·云原生·云计算
索迪迈科技2 小时前
INDEMIND亮相2025科技创变者大会,以机器人空间智能技术解锁具身智能新边界
人工智能·机器人·扫地机器人·空间智能·陪伴机器人
栒U2 小时前
一文从零部署vLLM+qwen0.5b(mac本地版,不可以实操GPU单元)
人工智能·macos·vllm
沫儿笙2 小时前
FANUC发那科焊接机器人铝材焊接节气
人工智能·机器人