利用python爬取某壳的房产数据

以无锡的某壳为例进行数据爬取,现在房子的价格起伏很快,买房是人生一个大事,了解本地的房价走势来判断是否应该入手。

(建议是近2年不买,本人在21年高位抛了一套房,基本是通过贝壳数据判断房价已经到顶,希望此爬虫能够帮到各位。)

这里只爬了必看好房的数据,贝壳有放抓机制,无法跑全所有数据,有心的可以拿过去扩展一番。

复制代码
import requests
from pyquery import PyQuery as pq
import json
import pandas as pd
import datetime,time
columns = ['id','title','place','msg', 'price', 'per_meter','area','city']
areas=['滨湖区','梁溪区','新吴区','惠山区','锡山区','江阴市','宜兴市']
# 爬取某网页
def get_a_page(url,area):
    result = requests.get(url)
    doc = pq(result.text)
    ul = doc('.sellListContent')
    divs = ul.children('.clear .info.clear').items()
    count = 0
    realids=[]
    titles = []
    places = []
    msgs = []
    prices = []
    per_meters = []
    realarea=[]
    citys=[]
    for div in divs:
        count += 1
        realid=div.children('.address .priceInfo .unitPrice').attr('data-hid')
        title = div.children('.title a').text()
        place = div.children('.address .flood .positionInfo a').text()
        msg = div.children('.address .houseInfo').text()
        price = div.children('.address .priceInfo .totalPrice span').text()
        per_meter = div.children('.address .priceInfo .unitPrice span').text()
        city='无锡'
        dict = {
            'id':realid,
            'title': title,
            'place': place,
            'msg': msg,
            'price': price,
            'per_meter': per_meter,
            'area':areas[area],
            'city':'无锡'
        }
        realids.append(realid)
        titles.append(title)
        places.append(place)
        msgs.append(msg)
        prices.append(price)
        per_meters.append(per_meter)
        realarea.append(areas[area])
        citys.append(city)
        print(str(count) + ':' + json.dumps(dict, ensure_ascii=False))
    datas={
        'id':realids,
        'title': titles,
        'place': places,
        'msg': msgs,
        'price': prices,
        'per_meter': per_meters,
        'area':realarea,
        'city':citys
    }
    df = pd.DataFrame(data=datas, columns=columns)
    df.to_csv('wx'+time.strftime('%Y-%m-%d')+'.csv', mode='a', index=False, header=False)

if __name__ == '__main__':
    quyu=['binhu','liangxi','xinwu','huishan','xishan','jiangyinshi','yixingshi']
    index=0
    for qy in quyu:
        #print (index)
        #print (qy)
        for i in range(1, 20):
            get_a_page(f'https://wx.ke.com/ershoufang/{qy}/pg{i}tt9/',index)
        index=index+1
相关推荐
JavaEdge在掘金2 分钟前
精通 Spring AOP Execution 表达式:精准匹配你的切点
python
通南北12 分钟前
使用python实现自动化拉取压缩包并处理流程
开发语言·python·自动化
学渣6765616 分钟前
【Jupyter 启动时如何指定目录】
ide·python·jupyter
databook18 分钟前
『Plotly实战指南』--交互功能基础篇
python·数据分析·数据可视化
aiweker44 分钟前
数据分析(四):Python Pandas数据输入输出全流程指南
python·数据分析·pandas
晨曦5432101 小时前
Numpy数组与矩阵——python学习
python·矩阵·numpy
梓羽玩Python1 小时前
7.8K 标星!这个Python神器把MCP服务器变成「搭积木」一样简单!
python·github
a小胡哦1 小时前
TensorFlow深度学习框架:从入门到精通的完整指南
pytorch·python·github·tensorflow
这里有鱼汤1 小时前
出大事了!0.1 + 0.2 居然不等于 0.3,Python我再也不敢用了…
后端·python