论文笔记:DeepMove: Predicting Human Mobility with Attentional Recurrent Networks

WWW 2018

1 Intro

  • 根据对百万级用户群的研究,93%的人类移动是可预测的。

  • 早期的mobility预测方法大多基于模式的。

    • 首先从轨迹中发现预定义的移动模式(顺序模式、周期模式)
    • 然后基于这些提取的模式预测未来位置。
  • 最近的发展转向基于模型的方法进行流动性预测。

    • 利用顺序统计模型(例如,马尔可夫链或递归神经网络)来捕捉人体运动的转变规律,并从给定的训练语料库中学习模型参数。
    • 尽管基于模型的移动性预测很好,但仍有挑战有待解决:
      • 1)人类移动性的复杂转变规律
      • 2)人类移动的多层次周期性
      • 3)人类流动性的数据的异质性和稀疏性
  • ------>提出了DeepMove

    • 从冗长和稀疏的轨迹中预测人类移动性的注意力递归神经网络模型

2 方法

2.1 方法总览

2.2 candidate generator

3 实验

3.1 数据集

3.2 实验结果

相关推荐
SatoshiGogo2 小时前
AIGC 论文笔记
论文阅读·aigc
walnut_oyb15 小时前
arXiv|SARLANG-1M:用于 SAR 图像理解的视觉-语言建模基准
论文阅读·人工智能·机器学习·计算机视觉·语言模型·自然语言处理
m0_650108241 天前
Gemini 2.5:重塑多模态 AI 边界的全面解读
论文阅读·人工智能·多模态大模型·gemini 2.5·跨模态融合
钟屿1 天前
Back to Basics: Let Denoising Generative Models Denoise 论文阅读学习
论文阅读·人工智能·笔记·学习·计算机视觉
张较瘦_1 天前
[论文阅读] AI + 数据库 | 拆解智能数据库:交互、管理、内核三层革新,AI 如何重塑数据处理
数据库·论文阅读·人工智能
橘子是码猴子2 天前
Patch-wise Structural Loss for Time Series Forecasting论文阅读
论文阅读
m0_650108242 天前
Flamingo:打破模态壁垒的少样本视觉语言模型
论文阅读·人工智能·视觉语言模型·deepmind·vlm·通用智能·通用小样本适配
诸葛思颖2 天前
【论文阅读笔记】FedProx
论文阅读·笔记
墨绿色的摆渡人3 天前
论文笔记(一百零三)π0.6 : a VLA That Learns From Experience(二)
论文阅读
诸葛思颖3 天前
【论文阅读笔记】FL+HC(联邦学习+层次聚类)
论文阅读·笔记·聚类