论文笔记:DeepMove: Predicting Human Mobility with Attentional Recurrent Networks

WWW 2018

1 Intro

  • 根据对百万级用户群的研究,93%的人类移动是可预测的。

  • 早期的mobility预测方法大多基于模式的。

    • 首先从轨迹中发现预定义的移动模式(顺序模式、周期模式)
    • 然后基于这些提取的模式预测未来位置。
  • 最近的发展转向基于模型的方法进行流动性预测。

    • 利用顺序统计模型(例如,马尔可夫链或递归神经网络)来捕捉人体运动的转变规律,并从给定的训练语料库中学习模型参数。
    • 尽管基于模型的移动性预测很好,但仍有挑战有待解决:
      • 1)人类移动性的复杂转变规律
      • 2)人类移动的多层次周期性
      • 3)人类流动性的数据的异质性和稀疏性
  • ------>提出了DeepMove

    • 从冗长和稀疏的轨迹中预测人类移动性的注意力递归神经网络模型

2 方法

2.1 方法总览

2.2 candidate generator

3 实验

3.1 数据集

3.2 实验结果

相关推荐
七夜星七夜月1 天前
时间序列预测论文阅读和相关代码库
论文阅读·python·深度学习
WenBoo-2 天前
HIPT论文阅读
论文阅读
chnyi6_ya2 天前
论文笔记:Buffer of Thoughts: Thought-Augmented Reasoning with Large Language Models
论文阅读·人工智能·语言模型
Jude_lennon2 天前
【论文笔记】结合:“integrate“ 和 “combine“等
论文阅读
LuH11242 天前
【论文阅读笔记】HunyuanVideo: A Systematic Framework For Large Video Generative Models
论文阅读·笔记
lalahappy2 天前
Swin transformer 论文阅读记录 & 代码分析
论文阅读·深度学习·transformer
开心星人2 天前
【论文阅读】Trigger Hunting with a Topological Prior for Trojan Detection
论文阅读
图学习的小张2 天前
论文笔记:是什么让多模态学习变得困难?
论文阅读·神经网络·机器学习
Maker~2 天前
28、论文阅读:基于像素分布重映射和多先验Retinex变分模型的水下图像增强
论文阅读·深度学习
小嗷犬3 天前
【论文笔记】CLIP-guided Prototype Modulating for Few-shot Action Recognition
论文阅读·人工智能·深度学习·神经网络·多模态