关于基本算法思想这一篇就够了

递推算法基本思想

递推算法是通过已知条件,利用特定关系得出中间结论,直至得到最后结果的算法。递推算法按照一定的规律来计算序列中的每一项,通常是通过计算机器前一项(或前几项)的值来推出当前项的值。

示例(斐波那契数列)

|---|---------------------------------------------------------|
| | public class Fibonacci { |
| | public static int fibonacci(int n) { |
| | if (n <= 1) { |
| | return n; |
| | } |
| | int a = 0, b = 1, c; |
| | for (int i = 2; i <= n; i++) { |
| | c = a + b; |
| | a = b; |
| | b = c; |
| | } |
| | return b; |
| | } |
| | |
| | public static void main(String[] args) { |
| | System.out.println(fibonacci(10)); // 输出第10项斐波那契数列的值 |
| | } |
| | } |

递归算法思想

递归算法是一种直接或间接地调用自身的算法。它将问题分解为更小的子问题,然后递归地求解子问题,最后将子问题的解组合起来,形成原问题的解。

示例(阶乘函数)

|---|-------------------------------------------------|
| | public class Factorial { |
| | public static int factorial(int n) { |
| | if (n <= 1) { |
| | return 1; |
| | } |
| | return n * factorial(n - 1); // 递归调用自身 |
| | } |
| | |
| | public static void main(String[] args) { |
| | System.out.println(factorial(5)); // 输出5的阶乘值 |
| | } |
| | } |

分治算法思想

分治算法是将一个难以直接解决的大问题,分割成一些规模较小的相同问题,以便各个击破,分而治之。递归地解决这些子问题,然后将子问题的解合并起来,形成原问题的解。

示例(归并排序)

复制代码

|---|-------------------------------------------------------------------------|
| | public class MergeSort { |
| | public static void mergeSort(int[] arr, int left, int right) { |
| | if (left < right) { |
| | int mid = (left + right) / 2; |
| | mergeSort(arr, left, mid); // 递归解决左半部分 |
| | mergeSort(arr, mid + 1, right); // 递归解决右半部分 |
| | merge(arr, left, mid, right); // 合并左右两部分 |
| | } |
| | } |
| | |
| | // 合并两个有序数组 |
| | private static void merge(int[] arr, int left, int mid, int right) { |
| | int[] temp = new int[right - left + 1]; |
| | int i = left, j = mid + 1, k = 0; |
| | while (i <= mid && j <= right) { |
| | if (arr[i] <= arr[j]) { |
| | temp[k++] = arr[i++]; |
| | } else { |
| | temp[k++] = arr[j++]; |
| | } |
| | } |
| | while (i <= mid) { |
| | temp[k++] = arr[i++]; |
| | } |
| | while (j <= right) { |
| | temp[k++] = arr[j++]; |
| | } |
| | // 将temp中的元素复制回arr中 |
| | for (i = left, k = 0; i <= right; i++, k++) { |
| | arr[i] = temp[k]; |
| | } |
| | } |
| | |
| | public static void main(String[] args) { |
| | int[] arr = {38, 27, 43, 3, 9, 82, 10}; |
| | mergeSort(arr, 0, arr.length - 1); |
| | for (int i : arr) { |
| | System.out.print(i + " "); |
| | } |
| | } |
| | } |

概率算法思想

概率算法是基于一定的概率性结论来求解问题的算法。这种算法并不总是给出确定的答案,而是给出一个答案的概率或期望。

示例(模拟随机漫步)

|---|-----------------------------------------------------------------------------------------------------|
| | import java.util.HashMap; |
| | import java.util.Map; |
| | import java.util.Random; |
| | |
| | public class RandomWalk { |
| | |
| | // 模拟随机漫步的函数 |
| | public static Map<Integer, Integer> simulateRandomWalk(int steps, double rightStepProbability) { |
| | Random rand = new Random(); |
| | int position = 0; |
| | Map<Integer, Integer> positionCounts = new HashMap<>(); // 存储位置出现的次数 |
| | |
| | // 初始化位置计数为0 |
| | for (int i = -steps; i <= steps; i++) { |
| | positionCounts.put(i, 0); |
| | } |
| | |
| | for (int i = 0; i < steps; i++) { |
| | if (rand.nextDouble() < rightStepProbability) { |
| | position++; // 朝右走一步 |
| | } else { |
| | position--; // 朝左走一步 |
| | } |
| | // 更新位置计数 |
| | positionCounts.put(position, positionCounts.getOrDefault(position, 0) + 1); |
| | } |
| | |
| | return positionCounts; |
| | } |
| | |
| | // 主函数,模拟并输出结果 |
| | public static void main(String[] args) { |
| | int steps = 1000; // 设定步数 |
| | double rightStepProbability = 0.5; // 设定向右走的概率 |
| | Map<Integer, Integer> positionCounts = simulateRandomWalk(steps, rightStepProbability); |
| | |
| | // 输出结果 |
| | for (Map.Entry<Integer, Integer> entry : positionCounts.entrySet()) { |
| | System.out.println("Position " + entry.getKey() + " occurred " + entry.getValue() + " times."); |
| | } |
| | } |
| | } |

在这个示例中,simulateRandomWalk 函数模拟了随机漫步过程,并统计了每个位置出现的次数。主函数 main 设定了步数和向右走的概率,并调用了 simulateRandomWalk 函数进行模拟,最后输出了每个位置出现的次数。由于随机性,每次运行程序得到的结果都会有所不同。这个示例展示了概率算法的一个基本思想:通过模拟大量随机事件来估计某个事件发生的概率或期望。

相关推荐
方圆想当图灵5 分钟前
缓存之美:万文详解 Caffeine 实现原理(下)
java·redis·缓存
Victoria.a10 分钟前
顺序表和链表(详解)
数据结构·链表
old_power16 分钟前
【PCL】Segmentation 模块—— 基于图割算法的点云分割(Min-Cut Based Segmentation)
c++·算法·计算机视觉·3d
栗豆包19 分钟前
w175基于springboot的图书管理系统的设计与实现
java·spring boot·后端·spring·tomcat
Bran_Liu30 分钟前
【LeetCode 刷题】字符串-字符串匹配(KMP)
python·算法·leetcode
涛ing33 分钟前
21. C语言 `typedef`:类型重命名
linux·c语言·开发语言·c++·vscode·算法·visual studio
等一场春雨1 小时前
Java设计模式 十四 行为型模式 (Behavioral Patterns)
java·开发语言·设计模式
Jcqsunny1 小时前
[分治] FBI树
算法·深度优先··分治
黄金小码农1 小时前
C语言二级 2025/1/20 周一
c语言·开发语言·算法
笔耕不辍cj1 小时前
两两交换链表中的节点
数据结构·windows·链表