Spark RDD

一、什么是 RDD

RDD(Resilient Distributed Dataset)叫做弹性分布式数据集,是 Spark 中最基本的数据处理模型。代码中是一个抽象类,它代表一个弹性的、不可变、可分区、里面的元素可并行计算的集合。

➢ 弹性

⚫ 存储的弹性:内存与磁盘的自动切换

⚫ 容错的弹性:数据丢失可以自动恢复

⚫ 计算的弹性:计算出错重试机制

⚫ 分片的弹性:可根据需要重新分片。

➢ 分布式:数据存储在大数据集群不同节点上

➢ 数据集:RDD 封装了计算逻辑,并不保存数据

➢ 数据抽象:RDD 是一个抽象类,需要子类具体实现

➢ 不可变:RDD 封装了计算逻辑,是不可以改变的,想要改变,只能产生新的 RDD,在

新的 RDD 里面封装计算逻辑

➢ 可分区、并行计算

二、Spark中的RDD(弹性分布式数据集)有以下常用API:

map(func): 对RDD中的每个元素应用给定的函数,并返回一个新的RDD。
scala 复制代码
  val mapRDD = rdd.map(
    num => {
      // 使用累加器
      sumAcc.add(num)
      num
    }
  )
filter(func): 根据给定的函数过滤RDD中的元素,并返回一个新的RDD。
scala 复制代码
  val orderActionRDD = actionRDD.filter(
    action => {
      val datas = action.split("_")
      datas(8) != "null"
    }
  )
flatMap(func): 对RDD中的每个元素应用给定的函数,并将结果扁平化为一个新的RDD。
scala 复制代码
val words: RDD[String] = lines.flatMap(_.split(" "))
reduce(func): 使用给定的函数将RDD中的所有元素聚合成一个值。
scala 复制代码
  val wordCount = mapWord.reduce(
    (map1, map2) => {
      map2.foreach {
        case (word, count) => {
          val newCount = map1.getOrElse(word, 0L) + count
          map1.update(word, newCount)
        }
      }
      map1
    }
  )
collect(): 将RDD中的所有元素收集到驱动程序节点的数组中。
scala 复制代码
mapRDD.collect()
  1. count(): 返回RDD中的元素个数。

    scala 复制代码
    val cnt = rdd.count()
  2. first(): 返回RDD中的第一个元素。

    scala 复制代码
    val first = rdd.first()
  3. take(n): 返回RDD中的前n个元素。

    scala 复制代码
    val ints: Array[Int] = rdd.take(3)
  4. takeSample(withReplacement, num, seed): 从RDD中随机抽取样本。

    scala 复制代码
  5. foreach(func): 对RDD中的每个元素应用给定的函数,但不返回结果。

    scala 复制代码
    rdd.foreach(
     num => {
    // 使用累加器
       sumAcc.add(num)
      }
    )
  6. foreachPartition(func): 对RDD中的每个分区应用给定的函数。

    scala 复制代码
      rdd.foreachPartition(iter => {
        val conn = JDBCUtil.getConnection
        iter.foreach {
          case ((day, user, ad), count) => {
    
          }
        }
        conn.close()
      })
  7. groupByKey(): 根据键值对RDD中的键进行分组。

    scala 复制代码
  8. reduceByKey(func): 根据键值对RDD中的键进行聚合。

    scala 复制代码
  9. aggregateByKey(zeroValue, seqOp, combOp): 根据键值对RDD中的键进行聚合。

    scala 复制代码
  10. sortBy(keyFunc): 根据给定的键函数对RDD中的元素进行排序。

    scala 复制代码
  11. sortBy(keyFunc, ascending): 根据给定的键函数和升序标志对RDD中的元素进行排序。

    scala 复制代码
  12. union(other): 合并两个RDD。

    scala 复制代码
  13. intersection(other): 计算两个RDD的交集。

    scala 复制代码
  14. subtract(other): 计算两个RDD的差集。

    scala 复制代码
  15. distinct(): 去除RDD中的重复元素。

    scala 复制代码
  16. cartesian(other): 计算两个RDD的笛卡尔积。

    scala 复制代码
  17. pipe(command): 使用外部命令处理RDD中的数据。

    scala 复制代码
  18. saveAsTextFile(path): 将RDD保存为文本文件。

    scala 复制代码
  19. textFile(path): 从文本文件中读取数据并创建RDD。

    scala 复制代码
  20. parallelize(data): 从集合中创建RDD。

    scala 复制代码
  21. toDF(): 将RDD转换为DataFrame。

    scala 复制代码
  22. toDS(): 将RDD转换为Dataset。

    scala 复制代码

这些API是Spark RDD编程模型中最常用的一些,它们可以帮助你完成数据处理、转换和聚合等任务。

相关推荐
放学有种别跑、13 小时前
GIT使用指南
大数据·linux·git·elasticsearch
gAlAxy...14 小时前
SpringMVC 响应数据和结果视图:从环境搭建到实战全解析
大数据·数据库·mysql
ganqiuye14 小时前
向ffmpeg官方源码仓库提交patch
大数据·ffmpeg·video-codec
越努力越幸运50815 小时前
git工具的学习
大数据·elasticsearch·搜索引擎
不会写程序的未来程序员15 小时前
详细的 Git 操作分步指南
大数据·git·elasticsearch
我是唐青枫15 小时前
C#.NET 范围与索引(Range、Index)完全解析:语法、用法与最佳实践
c#·.net
Kiri霧15 小时前
Scala 循环控制:掌握 while 和 for 循环
大数据·开发语言·scala
pale_moonlight15 小时前
九、Spark基础环境实战((上)虚拟机安装Scala与windows端安装Scala)
大数据·分布式·spark
武子康15 小时前
大数据-167 ELK Elastic Stack(ELK) 实战:架构要点、索引与排错清单
大数据·后端·elasticsearch
艾莉丝努力练剑17 小时前
【Python基础:语法第一课】Python 基础语法详解:变量、类型、动态特性与运算符实战,构建完整的编程基础认知体系
大数据·人工智能·爬虫·python·pycharm·编辑器