LangChain入门教程 - 使用代理Agent

对于大模型,比如某些场景,需要数学计算,或者需要从某些网站获取参考资料,就必须使用专门的代理来完成任务。这里我们使用langchain提供的数学工具来实现一个最简单的例子,下一篇我们会讲如何自己实现代理。

首先创建一个对话模型,记得自己设置环境变量QIANFAN_AKQIANFAN_SK

python 复制代码
from langchain_community.chat_models import QianfanChatEndpoint

chatModel = QianfanChatEndpoint(
    model='ERNIE-Bot',
    endpoint='completions'
)

组装代理

我们使用lc库提供的数学包LLMMathChain组装数学代理,负责数学相关的计算工作。这里简单解释一下代理的工作原理,不完全正确,但大概原理是没跑的:大模型在收到问题后,和工具的描述匹配一下,决定使用哪些工具。然后把问题理解后生成合适的参数调用工具并返回结果。这里面是个大黑盒,怎么理解和拆分问题并匹配工具都是由大模型自己决定的,你只能通过提示词给出参考。对于百度的千帆,测试中发现对于数学问题用英文提问比较好,如果是中文理解就问有问题,没法正确调用工具。

python 复制代码
from langchain import LLMMathChain
from langchain.agents import AgentType, initialize_agent
from langchain.tools import BaseTool, Tool
from pydantic import BaseModel, Field

tools = []

class CalculatorInput(BaseModel):
    question: str = Field()
    
llm_math_chain = LLMMathChain(llm=chatModel, verbose=True)

tools.append(
    Tool.from_function(
        func=llm_math_chain.run,
        name='牛逼的计算器',
        description='用于回答数学问题',
        args_schema=CalculatorInput
    )
)


# ZERO_SHOT_REACT_DESCRIPTION代表根据工具的描述进行选择
agent = initialize_agent(
    tools, chatModel, agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION, verbose=True
)

这里args_schema参数用于构造输入参数,CalculatorInut的写法参考pydantic的文档:pydantic · PyPI

提问

python 复制代码
# 使用英文便于大模型理解
agent.run(
    'What is the result of 5.85 raised to the 2.16 power?'
)

"""输出
> Entering new AgentExecutor chain...

This is a mathematical question that requires raising a number to a specific power.

Action: 牛逼的计算器
Action Input: Calculate 5.85 raised to the power of 2.16


> Entering new LLMMathChain chain...
Calculate 5.85 raised to the power of 2.16

```text
5.85**2.16
```
...numexpr.evaluate("5.85**2.16")...

Answer: 45.400085499141575
> Finished chain.

Observation: Answer: 45.400085499141575
Thought:I now know the result of 5.85 raised to the 2.16 power.

Final Answer: 5.85 raised to the 2.16 power is equal to 45.400085499141575.

> Finished chain.
"""

代理是如何执行的?

前面我们在构造tool时,func参数设置为llm_math_chain.run。那么这个函数支持哪些参数,被调用时传进来的参数又是什么样的呢?一种方法是找源码,那个比较费事,我们可以inspect库提供的方法查看信息,然后自己在run函数外面包一层,就能看到想要看的信息了。

使用inspect函数查看信息,我们可以看到run有哪些参数和参数的默认值。

python 复制代码
import inspect

sig = inspect.signature(llm_math_chain.run)

for name, para in sig.parameters.items():
    print(name, para.default)

'''输出
args <class 'inspect._empty'>
callbacks None
tags None
metadata None
kwargs <class 'inspect._empty'>
'''

我们在这里只关心第一个参数args,我们自己定义一个函数打印传了什么参数进来。

python 复制代码
from langchain import LLMMathChain
from langchain.tools import BaseTool, Tool
from pydantic import BaseModel, Field

tools = []

class CalculatorInput(BaseModel):
    question: str = Field()
    
llm_math_chain = LLMMathChain(llm=chatModel, verbose=True)

def my_math_func(*args):
    print('输入参数', args)
    return llm_math_chain.run(*args)

tools.append(
    Tool.from_function(
        func=my_math_func,
        name='牛逼的计算器',
        description='用于回答数学问题',
        args_schema=CalculatorInput
    )
)

'''
我们可以看到以下输出:

Action: 牛逼的计算器

Action Input: Calculate 5.85 raised to the 2.16 power.
输入参数 ('Calculate 5.85 raised to the 2.16 power.\n',)
'''
相关推荐
IT小哥哥呀4 分钟前
基于深度学习的数字图像分类实验与分析
人工智能·深度学习·分类
布林模型10 分钟前
缠论工具czsc快速使用入门(二)
python·缠论·快速入门·czsc
邂逅you24 分钟前
用python操作mysql之pymysql库基本操作
数据库·python·mysql
啊森要自信26 分钟前
【GUI自动化测试】YAML 配置文件应用:从语法解析到 Python 读写
android·python·缓存·pytest·pip·dash
机器之心28 分钟前
VAE时代终结?谢赛宁团队「RAE」登场,表征自编码器或成DiT训练新基石
人工智能·openai
机器之心29 分钟前
Sutton判定「LLM是死胡同」后,新访谈揭示AI困境
人工智能·openai
大模型真好玩32 分钟前
低代码Agent开发框架使用指南(四)—Coze大模型和插件参数配置最佳实践
人工智能·agent·coze
jerryinwuhan33 分钟前
基于大语言模型(LLM)的城市时间、空间与情感交织分析:面向智能城市的情感动态预测与空间优化
人工智能·语言模型·自然语言处理
合作小小程序员小小店36 分钟前
web开发,学院培养计划系统,基于Python,FlaskWeb,Mysql数据库
后端·python·mysql·django·web app
落雪财神意1 小时前
股指10月想法
大数据·人工智能·金融·区块链·期股