对视频实现人脸识别

惯例先上结果:

在c++ opencv Chapter8 - Face Detection中介绍了人脸图片的标记,而视频其实是每一帧图片所组成,因此也能实现对视频的人脸识别,由于模型的劣势,实现的效果一般。

重点介绍写出视频函数:out.open(output_video_path, VideoWriter::fourcc('M', 'J', 'P', 'G'),fps, Size(680,480), true);

output_video_path:路径

VideoWriter::fourcc('M', 'J', 'P', 'G'):压缩格式

fps:帧率

Size(680,480):分辨率

true:彩色

需要定义写出视频路径,读入帧率要和写出视频帧率一样,视频分辨率也要相同,另外一个注意点是压缩视频格式,网上有很多方法获取视频格式,亲试,许多并不行,可能电脑问题,写出的视频无法播放,报错:This file isn't playable. That might be because the file type is unsupported, the file extension is incorrect, or the file is corrupt.

其实原因是压缩视频格式电脑无法读取,这边建议:

VideoWriter::fourcc('M', 'J', 'P', 'G')这种格式。

人脸识别可以参考我上篇:https ://blog.csdn.net/qq_50934329/article/details/138148565

直接上代码:

cpp 复制代码
#include <opencv2/imgcodecs.hpp>
#include <opencv2/highgui.hpp>
#include <opencv2/imgproc.hpp>
#include <opencv2/objdetect.hpp>
#include <iostream>

   Face Detection    ///
using namespace std;
using namespace cv;

int  midpoint(Point2i ptA,Point2i ptB) {
	return ((ptA.x - ptB.x) * 0.5 + (ptA.y - ptB.y) * 0.5);
}	

int main() {
	string path = "Learn-OpenCV-cpp-in-4-Hours-main\\Resources\\4.26.mp4";
	string output_video_path = "text_save.avi";
	Mat fram,image, img;
	int x, y,width,height;
	Point a, b;
	VideoCapture cap(path);

	int fps = cap.get(CAP_PROP_FPS); //获取视频的帧率
		//获取视频的长宽
	width = int(cap.get(CAP_PROP_FRAME_WIDTH));
	height = int(cap.get(CAP_PROP_FRAME_HEIGHT));

	vector<Rect>faces;
	CascadeClassifier faceCascade;
	faceCascade.load("Learn-OpenCV-cpp-in-4-Hours-main\\Resources\\haarcascade_frontalface_default.xml");
	
	VideoWriter out;
	out.open(output_video_path, VideoWriter::fourcc('M', 'J', 'P', 'G'),fps, Size(680,480), true);
	if (!cap.isOpened())
	{
		cout << "Video load failed!" << endl;
		return -1;
	}

	if (faceCascade.empty())
	{
		cout << "XML file not loadeed" << endl;
	}

	/*1.1scaleFactor
	因为图像的像素有大有小,图像中的人脸因为远近不同也会有大有小,
	所以需要通过scaleFactor参数设置一个缩小的比例,对图像进行逐步缩小来检测,
	这个参数设置的越大,计算速度越快,但可能会错过了某个大小的人脸
	minNeighbors参数10,只有其"邻居"大于等于这个值的结果才认为是正确结果。
	*/
	/*1.1,10
	 而每次缩小1.1倍,所以导致识别出的结果较少。
	下面我让scaleFactor=1.1,minNeighbors=3,
	你会发现,当scaleFactor=1.03时,每个人脸被识别的次数都比上一组测试要多
	,因为每次缩小的比例小,迭代的次数就多了。看一下输出结果
	*/
	while (true) {
		cap>>image;
		if (image.empty())
		{
			cout << "Video process finished!" << endl;
			return 0;
		}
		resize(image, img, Size(680, 480));
		faceCascade.detectMultiScale(img, faces, 1.1, 2);
		for (int i = 0; i < faces.size(); i++)
		{
				x = midpoint(faces[i].tl(), faces[i + 1].tl());
				y = midpoint(faces[i].br(), faces[i + 1].br());
				if ((10 <= x <= 20) && (10 <= y <= 20)) {
					a = faces[i].tl();
					b = faces[i].br();
					cout << a << endl;
					cout << b << endl;
				}
				rectangle(img, a, b, Scalar(255, 0, 255), 3);
			}
	
		namedWindow("Image", WINDOW_NORMAL);
		imshow("Image", img);
		out<<img;
		waitKey(1);
	}
	cap.release();
	out.release();
	destroyAllWindows();
	return 0;
}
相关推荐
南东山人12 分钟前
一文说清:C和C++混合编程
c语言·c++
Ysjt | 深3 小时前
C++多线程编程入门教程(优质版)
java·开发语言·jvm·c++
ephemerals__3 小时前
【c++丨STL】list模拟实现(附源码)
开发语言·c++·list
Microsoft Word3 小时前
c++基础语法
开发语言·c++·算法
一只小小汤圆4 小时前
opencascade源码学习之BRepOffsetAPI包 -BRepOffsetAPI_DraftAngle
c++·学习·opencascade
legend_jz4 小时前
【Linux】线程控制
linux·服务器·开发语言·c++·笔记·学习·学习方法
嘿BRE4 小时前
【C++】几个基本容器的模拟实现(string,vector,list,stack,queue,priority_queue)
c++
弗锐土豆5 小时前
工业生产安全-安全帽第二篇-用java语言看看opencv实现的目标检测使用过程
java·opencv·安全·检测·面部
如若1235 小时前
利用 `OpenCV` 和 `Matplotlib` 库进行图像读取、颜色空间转换、掩膜创建、颜色替换
人工智能·opencv·matplotlib