【一起深度学习-----VGG】

VGG

原理图:

为啥要使用VGG块呢?

对于AlexNet网络来说,虽然十分高效了,但是它并没有提供一个通用的模板,方便后续的研究。

故采用了模块化的思想,方便重复使用。

其实对比于AlexNet神经网络来说,VGG网络也只是保留了后边的全连接层,改变前边的卷积层部分,而卷积层部分可视为由一个个不同的卷积层组成的,可以循环添加。所以需要定义一个VGG块。如下:

python 复制代码
import time

import torch
from torch import nn
from d2l import torch as d2l

#vgg块,模块化思想,可用于快速构建深层的VGG网络
def vgg_block(num_convs,in_channels,out_channels):
    # num_convs:卷积层的数量,in_channels:输入通道,out_channels:输出通道
    layers = []
    # 下划线_表示占位符,因为不需要用到
    for _ in range(num_convs):
        layers.append(nn.Conv2d(in_channels,out_channels,kernel_size=3,padding=1))
        layers.append(nn.ReLU())
        in_channels = out_channels   #将输出通道 赋值给 输入通道,是为了确保在每次添加卷积层时,输入通道数等于上一层的输出通道数
    layers.append(nn.MaxPool2d(kernel_size=2,stride=2))
    #  *layers,称为 "解包",就是说,把laerys列表中的所有层(每一个元素)传递给Sequential
    # 对于元组和列表来说,用 * 来解包。
    # 对于字典来说,用 ** 来解包
    return nn.Sequential(*layers)

设置卷积层中的架构。

python 复制代码
conv_arch = (
    #(卷积层数,输出通道)
    (1,64),(1,128),(2,256),(2,512),(2,512),
)

定义生成VGG神经网络:

python 复制代码
def vgg(conv_arch):
    conv_blks = []
    in_channels = 1 #本案例中使用的是fashion_mninst 属于灰度图
    for (num_convs,out_channels) in conv_arch:
        conv_blks.append(vgg_block(num_convs,in_channels,out_channels)) #循环添加每一个vgg块
        in_channels = out_channels
    return nn.Sequential(
        *conv_blks, #将所有的vgg块解包,形成vgg网络的前部,
        nn.Flatten(),
        nn.Linear(out_channels * 7 * 7, 4096), nn.ReLU(), nn.Dropout(0.5),
        nn.Linear(4096, 4096), nn.ReLU(), nn.Dropout(0.5),
        nn.Linear(4096, 10))

对于全连接层为啥是 out_channels * 7 * 7 呢?观看下图计算过程(草稿字丑)

由于VGG神经网络的计算过大(相比于AlexNet网络来说),将其通道数给调小,实现如下:

python 复制代码
ratio = 4
# conv_arch :(卷积层数,通道数)
small_conv_arch = [(pair[0],pair[1] // ratio) for pair in conv_arch]
net = vgg(small_conv_arch)

终于可以开始训练了!

python 复制代码
lr, num_epochs, batch_size = 0.05, 10, 128
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size, resize=224)
time_start = time.time()
d2l.train_ch6(net, train_iter, test_iter, num_epochs, lr, d2l.try_gpu())
time_stop = time.time()
print(time_stop-time_start)

差点把电脑干报废,结果如下:

相关推荐
HPC_fac1305206781633 分钟前
科研深度学习:如何精选GPU以优化服务器性能
服务器·人工智能·深度学习·神经网络·机器学习·数据挖掘·gpu算力
猎嘤一号1 小时前
个人笔记本安装CUDA并配合Pytorch使用NVIDIA GPU训练神经网络的计算以及CPUvsGPU计算时间的测试代码
人工智能·pytorch·神经网络
天润融通2 小时前
天润融通携手挚达科技:AI技术重塑客户服务体验
人工智能
Elastic 中国社区官方博客3 小时前
使用 Elastic AI Assistant for Search 和 Azure OpenAI 实现从 0 到 60 的转变
大数据·人工智能·elasticsearch·microsoft·搜索引擎·ai·azure
江_小_白5 小时前
自动驾驶之激光雷达
人工智能·机器学习·自动驾驶
yusaisai大鱼6 小时前
TensorFlow如何调用GPU?
人工智能·tensorflow
珠海新立电子科技有限公司8 小时前
FPC柔性线路板与智能生活的融合
人工智能·生活·制造
IT古董9 小时前
【机器学习】机器学习中用到的高等数学知识-8. 图论 (Graph Theory)
人工智能·机器学习·图论
曼城周杰伦9 小时前
自然语言处理:第六十三章 阿里Qwen2 & 2.5系列
人工智能·阿里云·语言模型·自然语言处理·chatgpt·nlp·gpt-3
余炜yw9 小时前
【LSTM实战】跨越千年,赋诗成文:用LSTM重现唐诗的韵律与情感
人工智能·rnn·深度学习