Flink checkpoint 源码分析- Checkpoint barrier 传递源码分析

背景

在上一篇的博客里,大致介绍了flink checkpoint中的触发的大体流程,现在介绍一下触发之后下游的算子是如何做snapshot。

上一篇的文章: Flink checkpoint 源码分析- Flink Checkpoint 触发流程分析-CSDN博客

代码分析

  1. 在SubtaskCheckpointCoordinatorImpl中的checkpointState 主要进行了这个操作, source首先构造barrier,然后广播给下游。我们现在跟踪一下barrier的流动。

org.apache.flink.streaming.runtime.tasks.SubtaskCheckpointCoordinatorImpl#checkpointState

复制代码
 CheckpointBarrier checkpointBarrier =
                new CheckpointBarrier(metadata.getCheckpointId(), metadata.getTimestamp(), options);
        operatorChain.broadcastEvent(checkpointBarrier, options.isUnalignedCheckpoint());

这个广播实际上是将数据写入到了下游。写的方法实际上就是netty写。

从flush的方法进去可以看到实际上是通知下游数据可用,下游看到数据可用就可以拉数据。因此可以看到这里的数据传递是通过poll的方式。

最后这个方法最后调用的是:org.apache.flink.runtime.io.network.netty.PartitionRequestQueue#notifyReaderNonEmpty方法,通过netty告知下游有数据了。

这些数据是从哪里读取到的呢?其实是在org.apache.flink.runtime.io.network.partition.consumer.RemoteInputChannel#getNextBuffer里面,flink对netty 进行了封装

从这个方法再往上就可以看到是org.apache.flink.runtime.io.network.partition.consumer.SingleInputGate#getNextBufferOrEvent。

这里就是channel读取数据的地方。

这里有一个方法:transformToBufferOrEvent。这里判断里面是数据还是事件。flink中定义的事件如下。

如果这里会走第一个分支,会将数据放到buffer里

这个时候上层org.apache.flink.streaming.runtime.io.AbstractStreamTaskNetworkInput#emitNext

会接受数据, 如果是单流的话会在org.apache.flink.streaming.runtime.tasks.StreamTask#processInput 获取数据

里面有一个org.apache.flink.streaming.runtime.io.StreamOneInputProcessor#processInput

最后数据通过这个方法处理org.apache.flink.streaming.runtime.io.AbstractStreamTaskNetworkInput#emitNext

里面就是对barrier时间的处理

里面有不同的事件,针对不同的事件有不同的处理流程。其中包含了收到barrier如何处理的。从代码中可以看到有一个专门的方法处理barrier。这个位置实际就是:org.apache.flink.streaming.runtime.io.checkpointing.CheckpointedInputGate#handleEvent

以上就是flink源码中barrier流动处理,后面我们再继续看看,算子接受到barrier是如何处理。

相关推荐
问道飞鱼2 分钟前
【大数据知识】今天聊聊Clickhouse部署方案
大数据·clickhouse·部署
金融小师妹3 小时前
应用BERT-GCN跨模态情绪分析:贸易缓和与金价波动的AI归因
大数据·人工智能·算法
武子康3 小时前
大语言模型 10 - 从0开始训练GPT 0.25B参数量 补充知识之模型架构 MoE、ReLU、FFN、MixFFN
大数据·人工智能·gpt·ai·语言模型·自然语言处理
睎zyl7 小时前
Spark自定义分区器-基础
大数据·分布式·spark
巨龙之路7 小时前
【TDengine源码阅读】DLL_EXPORT
大数据·时序数据库·tdengine
元6338 小时前
搭建spark-local模式
大数据·spark
巨龙之路8 小时前
TDengine编译成功后的bin目录下的文件的作用
大数据·时序数据库·tdengine
莫叫石榴姐9 小时前
大模型在数据分析领域的研究综述
大数据·数据挖掘·数据分析
百锦再9 小时前
大数据技术的主要方向及其应用详解
大数据·linux·网络·python·django·pygame
巨龙之路10 小时前
【TDengine源码阅读】#if defined(__APPLE__)
大数据·时序数据库·tdengine