AUTOCRAWLER : A Progressive Understanding Web Agent for WebCrawler Generation

AUTOCRAWLER:用于生成 WebCrawler 的渐进式理解 Web 代理

Fudan University;Alibaba Holding-Aicheng Technology-Enterprise

Abstract

网络自动化是一项重要技术,它通过自动化常见的网络操作来完成复杂的网络任务,提高效率并减少手动干预。传统的网络自动化方法如wrappers,在适应性和可扩展性上有局限性,而基于大型语言模型(LLMs)的生成式代理在开放世界的环境中表现不佳。本文提出了一种针对垂直信息网页的爬虫生成任务,介绍了一种结合LLMs与爬虫的新范式,以提高爬虫应对多样化和不断变化的网络环境的效率。作者提出了AUTOCRAWLER,这是一种利用HTML的层次结构进行逐步理解的两阶段框架。通过自顶向下和后退操作,AUTOCRAWLER可以从错误的操作中学习并不断修剪HTML,以更好地生成操作。作者通过多种LLMs进行了全面实验,证明了框架的有效性。

1 Introduction

  • 网络自动化通过编程与基于Web的应用程序或网站交互,以执行通常需要人工干预的任务。传统的网络自动化方法主要依赖于wrappers,这些wrappers对网站或网页具有特定的适应性。大型语言模型(LLMs)为生成式代理提供了计划、推理和反思等高级功能,但在处理开放世界任务时,仍存在性能差和可重用性低的问题。
  • 主要贡献
    1. 提出了一种新的web爬虫生成任务,并对其进行分析。
    2. 引入了AUTOCRAWLER,这是一种具有渐进理解能力的两阶段框架。
    3. 实验结果表明,AUTOCRAWLER在爬虫生成任务中表现出色。

2 Preliminaries预备知识

  • 2.1 Task Formulation:爬虫生成任务是生成执行动作序列A的过程,目标是在给定的网页集合中提取目标信息。
  • 2.2 Datasets:使用SWDE、EXTENDED SWDE和DS1三个数据集来测试该任务。
  • 2.3 Evaluation Metrics:提出了可执行性评估来评估动作序列的效果,并采用传统的精确度、召回率和F1分数作为指标。

3 AUTOCRAWLER

  • 3.1 Modeling:将爬虫生成任务建模为动作序列生成任务。
  • 3.2 Progressive Generation:通过自顶向下和后退操作逐步生成动作序列。
  • 3.3 Synthesis:通过在种子网页上执行多个不同的动作序列来选择最终的动作序列。

4 Experiment

  • 4.1 Experimental Settings & Evaluation Metrics:进行了广泛的实验设置,包括使用不同的LLMs、数据集和评估指标。
  • 4.2 Main Results on SWDE:AUTOCRAWLER在执行任务时表现优于其他框架。
  • 4.3 Generate with Golden Label:在提供金标签的情况下,AUTOCRAWLER仍能有效提升模型性能。
  • 4.4 Further Study with AUTOCRAWLER:不同LLMs在生成动作序列的步数上存在差异,性能更强的LLMs生成的步数较少。
  • 4.5 Error Analysis:分析了AUTOCRAWLER在执行任务时的常见错误,包括网页结构缺乏通用性和多值信息丢失。

Conclusion: 文章提出了一个新的网络爬虫生成任务,并介绍了AUTOCRAWLER框架,这是一种结合LLMs和爬虫的新范式。AUTOCRAWLER利用HTML的层次结构进行逐步理解,通过自顶向下和后退操作生成操作序列。通过广泛的实验证明了该框架在网络爬虫生成任务中的有效性。

相关推荐
xinxiyinhe24 分钟前
如何设置Cursor中.cursorrules文件
人工智能·python
AI服务老曹28 分钟前
运用先进的智能算法和优化模型,进行科学合理调度的智慧园区开源了
运维·人工智能·安全·开源·音视频
alphaAIstack39 分钟前
大语言模型推理能力从何而来?
人工智能·语言模型·自然语言处理
zenRRan1 小时前
Qwen2.5-VL Technical Report!!! 操作手机电脑、解析化学公式和乐谱、剪辑电影等,妥妥六边形战士 !...
人工智能
冒泡的肥皂1 小时前
DeepSeek+Dify打造数据库查询专家
人工智能
让我安静会1 小时前
Obsidian·Copilot 插件配置(让AI根据Obsidian笔记内容进行对话)
人工智能·笔记·copilot
Allen_LVyingbo1 小时前
Scrum方法论指导下的Deepseek R1医疗AI部署开发
人工智能·健康医疗·scrum
Watermelo6171 小时前
从DeepSeek大爆发看AI革命困局:大模型如何突破算力囚笼与信任危机?
人工智能·深度学习·神经网络·机器学习·ai·语言模型·自然语言处理
Donvink2 小时前
【DeepSeek-R1背后的技术】系列九:MLA(Multi-Head Latent Attention,多头潜在注意力)
人工智能·深度学习·语言模型·transformer
计算机软件程序设计2 小时前
深度学习在图像识别中的应用-以花卉分类系统为例
人工智能·深度学习·分类