数据分析--客户价值分析RFM(K-means聚类/轮廓系数)

原数据

复制代码
import os
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn import metrics

### 数据抽取,读⼊数据
df = pd.read_csv("customers1997.csv") #相对路径读取数据
print(df.info())
print(df.columns)
print(df.describe())
# 特征选择,选择RFM
df = df.drop(labels=['customer_id','country','education','gender','member_card','total_children'],axis=1)

一、 K-means聚类

1. K-means聚类

复制代码
from sklearn.cluster import KMeans
from sklearn.metrics import silhouette_score
kmeans = KMeans(n_clusters=4)   #构造聚类模型,划分为 4 类
kmeans.fit(df)  # 聚类
pre_y = kmeans.predict(df)  # 预测点在哪个聚类中,或者是直接采用 kmeans.labels_ 提取
print(pre_y)  # 输出每个样本的聚类标签

from sklearn import metrics
print("轮廓系数:",metrics.silhouette_score(df, pre_y,metric='euclidean'))
# print("轮廓系数:",metrics.silhouette_score(df, kmeans.labels_,metric='euclidean'))

2. 轮廓系数

轮廓系数取值范围[-1,1]

  • -1的效果最差
  • 1 的效果最好

二、分箱法分类

1. 分类

数据分析--客户价值分析RFM(分箱法/标准化)-CSDN博客

2.轮廓系数

复制代码
from sklearn import metrics
df_rfm = df[['Recency','Frequency', 'Monetary']]
print("轮廓系数:",metrics.silhouette_score(df_rfm, df['Segment'],metric='euclidean'))

Python------Kmeans聚类算法、轮廓系数(算法理论、代码)_python kmeans-CSDN博客

相关推荐
极客数模20 小时前
【浅析赛题,一等奖水平】思路模型数据相关资料!2025 年“大湾区杯”粤港澳金融数学建模竞赛B 题 稳定币的综合评价与发展分析~
大数据·算法·数学建模·金融·数据挖掘·图论·1024程序员节
StarPrayers.20 小时前
Binary Classification& sigmoid 函数的逻辑回归&Decision Boundary
人工智能·分类·数据挖掘
spssau20 小时前
SPSSAU「质量控制」模块:从可视化监控到过程优化,一站式搞定质量难题
信息可视化·数据挖掘·数据分析
深蓝电商API21 小时前
从爬虫到平台:如何把你的爬虫项目做成一个技术产品?
爬虫·信息可视化·数据挖掘
hweiyu001 天前
数据挖掘 miRNA调节网络的构建(视频教程)
人工智能·数据挖掘
明月说数据1 天前
Smartbi 10 月版本亮点:AIChat对话能力提升,国产化部署更安全
ai·数据分析·版本更新
@小红花1 天前
Tableau 从零到精通:系统教学文档(自学版)
信息可视化·数据挖掘·数据分析
我是小邵1 天前
主流数据分析工具全景对比:Excel / Python / R / Power BI / Tableau / Qlik / Snowflake
python·数据分析·excel
北数云1 天前
北数云|利用Limix模型对tabular-benchmark数据集实现分类和回归任务
分类·数据挖掘·回归·gpu算力
慧都小项2 天前
数据驱动的架构设计:通过Enterprise Architect实现基于UML的架构治理
数据分析·数据架构·sparx ea